Hydrogenolysis of ethylene glycol to methanol over modified RANEY® catalysts.

Phys Chem Chem Phys

Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford, UK.

Published: June 2013

There is tremendous growing interest in utilizing biomass molecules for energy provision due to their carbon neutrality. Here, we employ ethylene glycol as a model compound for catalytic activation, which represents a basic unit for complex carbohydrate molecules (polyols). In this paper, hydrogenolysis of ethylene glycol to produce methanol in hydrogen over modified RANEY® Ni and Cu catalysts has been studied. This work provides essential information that may leads to the development of new catalysts for carbohydrate activation to methanol, a novel but important reaction concerning biomass conversion to transportable form of energy. Particularly, in this study, modification of electronic structure hence adsorption properties of RANEY® catalysts has mainly been achieved by blending with second metal(s). It is found that the activity and selectivity of this reaction can be significantly affected by this approach. In contrast, there is no subtle effect on methanol selectivity despite a great variation in the d-band centre position which shows a distinctive effect on other products. This result suggests that methanol is produced on specific surface sites independent from the other sites at an intrinsic rate and will not be converted to other products by the d-band alteration.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3cp51619aDOI Listing

Publication Analysis

Top Keywords

ethylene glycol
12
raney® catalysts
12
hydrogenolysis ethylene
8
modified raney®
8
methanol
5
glycol methanol
4
methanol modified
4
catalysts
4
catalysts tremendous
4
tremendous growing
4

Similar Publications

pH-Responsive Polyethylene Glycol Engagers for Enhanced Brain Delivery of PEGylated Nanomedicine to Treat Glioblastoma.

ACS Nano

January 2025

Department of Biological Science and Technology, Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan.

The blood-brain barrier (BBB) remains a major obstacle for effective delivery of therapeutics to treat central nervous system (CNS) disorders. Although transferrin receptor (TfR)-mediated transcytosis is widely employed for brain drug delivery, the inefficient release of therapeutic payload hinders their efficacy from crossing the BBB. Here, we developed a pH-responsive anti-polyethylene glycol (PEG) × anti-TfR bispecific antibody (pH-PEG engager) that can complex with PEGylated nanomedicine at physiological pH to trigger TfR-mediated transcytosis in the brain microvascular endothelial cells, while rapidly dissociating from PEGylated nanomedicine at acidic endosomes for efficient release of PEGylated nanomedicine to cross the BBB.

View Article and Find Full Text PDF

Coacervate-Derived Assembly of Poly(ethylene glycol) Nanoparticles for Combinational Tumor Therapy.

Adv Healthc Mater

January 2025

Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China.

Coacervates have garnered significant attention as potential drug carriers. However, the instability resulting from their intrinsic membrane-free nature restricts the application of coacervates in drug delivery. Herein, the engineering of poly(ethylene glycol) nanoparticles (PEG NPs) is reported using coacervates composed of PEG and polyphenols as the templates, where PEG is subsequently cross-linked based on different chemistries (e.

View Article and Find Full Text PDF

Compressible, anti-fatigue, extreme environment adaptable, and biocompatible supramolecular organohydrogel enabled by lignosulfonate triggered noncovalent network.

Nat Commun

January 2025

Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei Provincial Engineering Research Center of Emerging Functional Coating Materials, School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430079, China.

Achieving a synergy of biocompatibility and extreme environmental adaptability with excellent mechanical property remains challenging in the development of synthetic materials. Herein, a "bottom-up" solution-interface-induced self-assembly strategy is adopted to develop a compressible, anti-fatigue, extreme environment adaptable, biocompatible, and recyclable organohydrogel composed of chitosan-lignosulfonate-gelatin by constructing noncovalent bonded conjoined network. The ethylene glycol/water solvent induced lignosulfonate nanoparticles function as bridge in chitosan/gelation network, forming multiple interfacial interactions that can effectively dissipate energy.

View Article and Find Full Text PDF

Enzymes capable of breaking down polymers have been identified from natural sources and developed for industrial use in plastic recycling. However, there are many potential starting points for enzyme optimization that remain unexplored. We generated a landscape of 170 lineages of 1894 polyethylene terephthalate depolymerase (PETase) candidates and performed profiling using sampling approaches with features associated with PET-degrading capabilities.

View Article and Find Full Text PDF

Tunable Bicontinuous Macroporous Cell Culture Scaffolds via Kinetically Controlled Phase Separation.

Adv Mater

January 2025

Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, 8092, Switzerland.

3D scaffolds enable biological investigations with a more natural cell conformation. However, the porosity of synthetic hydrogels is often limited to the nanometer scale, which confines the movement of 3D encapsulated cells and restricts dynamic cell processes. Precise control of hydrogel porosity across length scales remains a challenge and the development of porous materials that allow cell infiltration, spreading, and migration in a manner more similar to natural ECM environments is desirable.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!