The correlation between the propagation loss and SiO2 film properties has been studied for temperature-compensated SAW devices using the SiO2/LiNbO3 structure. The SAW devices were prepared under different deposition temperatures for SiO2 film. Although they possessed excellent temperature coefficient of elasticity characteristics, devices prepared at lower temperature showed lower Q-factors. The SiO2 films were also deposited on a Si substrate under the same deposition conditions used for the SAW device preparation. Optical characterization was performed with Fourier transform infrared spectroscopy (FT-IR), spectrometer measurement, and Raman spectroscopy. IR absorbance spectra were almost same in the FT-IR measurement. However, optical attenuation in the UV region decreased with the deposition temperature in the spectrometer measurement. The optical attenuation is caused by the increase of the extinction coefficient in the SiO2 layer, and its optical wavelength dependence indicated that observed excess attenuation is caused by Rayleigh scattering. The Raman scattering also decreased with the deposition temperature in the Raman spectroscopy. The scattering is caused by the distortion of the SiO2 network. These results indicate that the Rayleigh scattering caused by the distortion of the SiO2 network is the main contributor to the excess SAW propagation loss in this case.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TUFFC.2013.2657DOI Listing

Publication Analysis

Top Keywords

propagation loss
12
correlation propagation
8
film properties
8
sio2 film
8
devices prepared
8
spectrometer measurement
8
raman spectroscopy
8
measurement optical
8
optical attenuation
8
decreased deposition
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!