Registration of 3D point clouds and meshes: a survey from rigid to nonrigid.

IEEE Trans Vis Comput Graph

Department of Computer Science, Swansea University, Faraday Tower, Singleton Park, Swansea, SA2 8PP, United Kingdom.

Published: July 2013

Three-dimensional surface registration transforms multiple three-dimensional data sets into the same coordinate system so as to align overlapping components of these sets. Recent surveys have covered different aspects of either rigid or nonrigid registration, but seldom discuss them as a whole. Our study serves two purposes: 1) To give a comprehensive survey of both types of registration, focusing on three-dimensional point clouds and meshes and 2) to provide a better understanding of registration from the perspective of data fitting. Registration is closely related to data fitting in which it comprises three core interwoven components: model selection, correspondences and constraints, and optimization. Study of these components 1) provides a basis for comparison of the novelties of different techniques, 2) reveals the similarity of rigid and nonrigid registration in terms of problem representations, and 3) shows how overfitting arises in nonrigid registration and the reasons for increasing interest in intrinsic techniques. We further summarize some practical issues of registration which include initializations and evaluations, and discuss some of our own observations, insights and foreseeable research trends.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TVCG.2012.310DOI Listing

Publication Analysis

Top Keywords

rigid nonrigid
12
nonrigid registration
12
registration
9
point clouds
8
clouds meshes
8
data fitting
8
registration point
4
meshes survey
4
survey rigid
4
nonrigid
4

Similar Publications

Purpose: In laparoscopic liver surgery, registering preoperative CT-extracted 3D models with intraoperative laparoscopic video reconstructions of the liver surface can help surgeons predict critical liver anatomy. However, the registration process is challenged by non-rigid deformation of the organ due to intraoperative pneumoperitoneum pressure, partial visibility of the liver surface, and surface reconstruction noise.

Methods: First, we learn point-by-point descriptors and encode location information to alleviate the limitations of descriptors in location perception.

View Article and Find Full Text PDF

The difficulty of quantum chemically computing vibrational, rotational, and rovibrational reference data via quartic force fields (QFFs) for molecules containing aluminum appears to be alleviated herein using a hybrid approach based upon CCSD(T)-F12b/cc-pCVTZ further corrected for conventional CCSD(T) scalar relativity within the harmonic terms and simple CCSD(T)-F12b/cc-pVTZ for the cubic and quartic terms: the F12-TcCR+TZ QFF. Aluminum containing molecules are theorized to participate in significant chemical processes in both the Earth's upper atmosphere as well as within circumstellar and interstellar media. However, experimental data for the identification of these molecules are limited, showcasing the potential for quantum chemistry to contribute significant amounts of spectral reference data.

View Article and Find Full Text PDF

One of the main limitations of conventional absorption-based X-ray micro-computed tomography imaging of biological samples is the low inherent X-ray contrast of soft tissue. To overcome this limitation, the use of ethanol as contrast agent has been proposed to enhance image contrast of soft tissues through dehydration. Some authors have shown that ethanol shrinks and hardens the tissue too much, also causing small tissue ruptures due to fast dehydration.

View Article and Find Full Text PDF

: Prostate-specific membrane antigen positron emission tomography/computed tomography (PSMA PET/CT), in combination with magnetic resonance imaging (MRI), may enhance the diagnosis and staging of prostate cancer. Image fusion of separately acquired PET/CT and MRI images serve to facilitate clinical integration and treatment planning. This study aimed to investigate different PSMA PET/CT and MRI image fusion workflows for prostate cancer visualisation.

View Article and Find Full Text PDF

Improved myocardial scar visualization using free-breathing motion-corrected wideband black-blood late gadolinium enhancement imaging in patients with implantable cardiac device.

Diagn Interv Imaging

December 2024

IHU LIRYC, Heart Rhythm Disease Institute, Université de Bordeaux, INSERM U1045, 33604, Pessac, France; Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; Department of Cardiovascular Imaging, Hôpital Cardiologique du Haut-Lévêque, CHU de Bordeaux, 33604 Pessac, France. Electronic address:

Purpose: The purpose of this study was to introduce and evaluate a novel two-dimensional wideband black-blood (BB) LGE sequence, incorporating wideband inversion recovery, wideband T2 preparation, and non-rigid motion correction (MOCO) reconstruction, to improve myocardial scar detection and address artifacts associated with implantable cardioverter defibrillators (ICDs).

Materials And Methods: The wideband MOCO free-breathing BB-LGE sequence was tested on a sheep with ischemic scar and in 22 patients with cardiac disease, including 15 with cardiac implants, at 1.5 T.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!