At a municipal solid waste landfill in southern California (USA) overlying a natural gas reservoir, methane was detected at concentrations of up to 40% (by volume) in perimeter soil gas probes. Stable isotope and (14)C values of methane together with gas composition (major components and volatile organic compounds) data were evaluated to assess the relative contributions of landfill gas and natural gas to the measured methane concentrations. The data was further used to estimate the residence time of the landfill gas in the probes. Results showed that up to 37% of the measured methane was derived from landfill gas. In addition, the landfill gas in the probe samples has undergone extensive alteration due to dissolution of carbon dioxide in pore water. Data further indicates that the measured methane was released from the waste approximately 1.2 to 9.4 years ago, rather than representing evidence of an ongoing release.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c3em30971a | DOI Listing |
J Environ Manage
January 2025
School of Civil Engineering, Iran University of Science and Technology, Tehran, Iran.
Environ Monit Assess
January 2025
Institut de Recherche Robert-Sauvé en Santé Et en Sécurité du Travail (IRSST), Montréal, Québec, Canada.
Environ Sci Pollut Res Int
January 2025
Department of Environmental Biotechnology, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Akademicka Str. 2, 44-100, Gliwice, Poland.
Water Res
December 2024
College of Environment, Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China.; Suzhou Research Institute, Hohai University, Suzhou 215100, PR China.. Electronic address:
With the increasing prevalence of emerging contaminants (ECs) in the environment, gaining a deeper understanding of the chemical information pertaining to the contamination source is a crucial step toward effective prevention and control of these ECs. This study presents a novel strategy for analyzing the chemical information of contamination sources using gas chromatography-high resolution mass spectrometry (GC-HRMS) and demonstrates it on landfill leachate, a common and representative environmental contamination source. Initially, a non-targeted screening approach using HRMS was used to characterize a total of 5344 organic compounds with identification confidence levels 1 and 2 in 14 landfill leachate samples.
View Article and Find Full Text PDFScientificWorldJournal
December 2024
Department of Mechanical Engineering, Dream Institute of Technology, Kolkata, 700104, India.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!