Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4332773 | PMC |
http://dx.doi.org/10.1016/j.cub.2013.04.002 | DOI Listing |
Front Microbiol
December 2024
Scientific Research Institute of Systems Biology and Medicine, Moscow, Russia.
Introduction: WhiA is a conserved protein found in numerous bacteria. It consists of an HTH DNA-binding domain linked with a homing endonuclease (HEN) domain. WhiA is one of the most conserved transcription factors in reduced bacteria of the class Mollicutes.
View Article and Find Full Text PDFNat Metab
January 2025
Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
Nutrient sensors allow cells to adapt their metabolisms to match nutrient availability by regulating metabolic pathway expression. Many such sensors are cytosolic receptors that measure intracellular nutrient concentrations. One might expect that inducing the metabolic pathway that degrades a nutrient would reduce intracellular nutrient levels, destabilizing induction.
View Article and Find Full Text PDFJ Zhejiang Univ Sci B
April 2024
Department of Biochemistry, and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
Front Plant Sci
December 2024
Key Laboratory of Applied Ecology of Loess Plateau, College of Life Science, Yan'an University, Yan'an, Shaanxi, China.
Precision water and fertilizer application technologies have emerged as crucial innovations in sustainable agriculture, addressing the pressing need to enhance crop yield and quality while optimizing resource use and minimizing environmental impacts. This review systematically explores the latest advancements in precision water and fertilizer application technologies. It examines the integration of advanced sensors, remote sensing, and machine learning algorithms in precision agriculture, assessing their roles in optimizing irrigation and nutrient management.
View Article and Find Full Text PDFJ Basic Microbiol
December 2024
Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
Cellulase production for hydrolyzing plant cell walls is energy-intensive in filamentous fungi during nutrient scarcity. AMP-activated protein kinase (AMPK), encoded by snf1, is known to be the nutrient and energy sensor in eukaryotes. Previous studies on AMPK identified its role in alternate carbon utilization in pathogenic fungi.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!