A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

[Application of computational fluid dynamics in hemodynamic research of aortic arch]. | LitMetric

Objective: To evaluate the application of computational fluid dynamics (CFD) on a patient-specific hemodynamic model of aortic arch.

Methods: The original Dicom format image data of a patient were acquired by computed tomographic angiography (CTA). A 3-dimensional (3D) model based on CFD was constructed through the right amount of boundary conditions and hemodynamic parameters related with flow velocity, shear force and wall stress on lumen were analyzed accordingly.

Results: The 3D model based on CFD could reflect the characteristic of flow velocity, shear force and wall stress on lumen in vitro. (1) The distributions of hemodynamic variables during cardiac cycle were spatiotemporally different. The unidirectional high-speed systolic current was replaced by diastolic eddy current and reversed flow. The distribution of flow velocity and shear stress gradually increased from outer wall of aortic artery to inner wall under the influences of such anatomical factors as vascular branching and distortions of descending aorta; (2) the magnitude and volatility of wall stress in ascending aorta were greater than those of aortic arch and descending aorta, but the least results were at the lateral wall of descending aorta area. In addition, the wall stress of external wall was higher than the lateral wall in the same section.

Conclusion: The hemodynamic research of aortic arch based on CFD may actually simulate the characteristics of blood flow and wall stress so as to become a new reliable and convenient application tool in etiological diagnosis and surgical planning.

Download full-text PDF

Source

Publication Analysis

Top Keywords

wall stress
20
based cfd
12
flow velocity
12
velocity shear
12
descending aorta
12
wall
10
computational fluid
8
fluid dynamics
8
hemodynamic aortic
8
model based
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!