Aims: Although demyelination is an important cause of neurological deficits in multiple sclerosis (MS), recently axonal pathology and concomitant involvement of sodium channels (Nav) became a focus of major interest. Studies in experimental autoimmune encephalomyelitis (EAE) and MS have shown diffuse expression of Nav1.6 and Nav1.2 along demyelinated axons. However, the relation between this expression by the axon and its environment is not yet known. The aim of this exploratory study was to identify the neuropathological characteristics of the plaque associated with the changes of sodium channel axonal expression.
Methods: We analysed by immunohistochemistry the expression of Nav1.6 and Nav1.2 along demyelinated axons in 64 plaques from 12 MS cases. To characterize the plaques, we used Luxol fast blue staining and immunohistochemistry for myelin basic protein, microglia/macrophages, T and B cells, reactive astrocytes and axonal lesions performed on sections of formalin-fixed, paraffin-embedded tissue.
Results: The presence of diffuse axonal expression of Nav1.6 was equally distributed between active demyelinating and inactive not demyelinating plaques based on presence or absence of myelin laden macrophages respectively. However, presence of diffuse axonal expression of Nav1.6 was more frequent within plaques with T cells infiltrate and microglial hyperplasia. On the other hand, Nav1.2 diffuse axonal expression seemed to be independent of the neuropathological environment of the plaque.
Conclusions: The cellular environment of the axon influences the differential expression of Nav channels. A better understanding of the influence of the inflammation on sodium channels mediated axonal degeneration could offer therapeutic perspectives.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/nan.12059 | DOI Listing |
Nat Commun
December 2024
Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA.
The bipolar disorder (BD) risk gene ANK3 encodes the scaffolding protein AnkyrinG (AnkG). In neurons, AnkG regulates polarity and ion channel clustering at axon initial segments and nodes of Ranvier. Disruption of neuronal AnkG causes BD-like phenotypes in mice.
View Article and Find Full Text PDFNat Commun
December 2024
The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
Deafness is the most common form of sensory impairment in humans and frequently caused by defects in hair cells of the inner ear. Here we demonstrate that in male mice which model recessive non-syndromic deafness (DFNB6), inactivation of Tmie in hair cells disrupts gene expression in the neurons that innervate them. This includes genes regulating axonal pathfinding and synaptogenesis, two processes that are disrupted in the inner ear of the mutant mice.
View Article and Find Full Text PDFActa Neuropathol Commun
December 2024
Department of Ophthalmology, UPMC Vision Institute, University of Pittsburgh School of Medicine, 1622 Locust Street, Pittsburgh, PA, 15219, USA.
Mammalian central nervous system (CNS) axons cannot spontaneously regenerate after injury, creating an unmet need to identify molecular regulators to promote axon regeneration and reduce the lasting impact of CNS injuries. While tubulin polymerization promoting protein family member 3 (Tppp3) is known to promote axon outgrowth in amphibians, its role in mammalian axon regeneration remains unknown. Here we investigated Tppp3 in retinal ganglion cells (RGCs) neuroprotection and axonal regeneration using an optic nerve crush (ONC) model in the rodent.
View Article and Find Full Text PDFJ Ethnopharmacol
December 2024
School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.
Ethnopharmacological Relevance: The Bu Shen Yi Sui capsule (BSYS), a modified version of the classical Chinese medicine formula Liu Wei Di Huang pill, has demonstrated therapeutic efficacy in the treatment of multiple sclerosis (MS). Nevertheless, the precise mechanism through which BSYS facilitates remyelination remains to be elucidated.
Aim Of The Study: This research investigates the role and potential mechanisms of BSYS-modified exosomes (exos) derived from bone marrow mesenchymal stem cells (BMSCs) in promoting remyelination in a cuprizone (CPZ)-induced demyelination model in mice.
Synapse
January 2025
Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
Mammalian sterile20-like kinase 1 (MST1), a serine/threonine kinase frequently expressed, has emerged as pivotal modulator of multiple physiological and pathological conditions such as cellular growth, programmed cell death, oxidative stress, neurodegeneration, inflammation, and synaptic plasticity in the central nervous system. Various neurological diseases are associated with the activation of MST1. Epilepsy is a severe neurological disorder characterized by abrupt abnormal electrical activity in the brain and recurring spontaneous seizures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!