Superparamagnetic nanoparticles varying by their chemical composition and synthesis method were used to transfer DNA into somatic cells under the influence of constant magnetic field (method of magnetofection). Magnetite particles obtained by mechanochemical synthesis ensured higher expression of the marker gene GFP (evaluated by fluorescence intensity of the cell lysate) then particles of ferric oxide obtained by chemical co-precipitation and cobalt ferrospinel particles obtained by the mechanochemical method.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10517-013-2027-2 | DOI Listing |
Somatic mutations in individual cells lead to genomic mosaicism, contributing to the intricate regulatory landscape of genetic disorders and cancers. To evaluate and refine the detection of somatic mosaicism across different technologies with personalized donor-specific assembly (DSA), we obtained tissue from the dorsolateral prefrontal cortex (DLPFC) of a post-mortem neurotypical 31-year-old individual. We sequenced bulk DLPFC tissue using Oxford Nanopore Technologies (∼60X), NovaSeq (∼30X), and linked-read sequencing (∼28X).
View Article and Find Full Text PDFTypical high-throughput single-cell RNA-sequencing (scRNA-seq) analyses are primarily conducted by (pseudo)alignment, through the lens of annotated gene models, and aimed at detecting differential gene expression. This misses diversity generated by other mechanisms that diversify the transcriptome such as splicing and V(D)J recombination, and is blind to sequences missing from imperfect reference genomes. Here, we present sc-SPLASH, a highly efficient pipeline that extends our SPLASH framework for statistics-first, reference-free discovery to barcoded scRNA-seq (10x Chromium) and spatial transcriptomics (10x Visium); we also provide its optimized module for preprocessing and -mer counting in barcoded data, BKC, as a standalone tool.
View Article and Find Full Text PDFWhile the genetic paradigm of cancer etiology has proven powerful, it remains incomplete as evidenced by the widening spectrum of non-cancer cell-autonomous "hallmarks" of cancer. Studies have demonstrated the commonplace presence of high oncogenic mutational burdens in homeostatically-stable epithelia. Hence, the presence of driver mutations alone does not result in cancer.
View Article and Find Full Text PDFFront Immunol
December 2024
Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, United States.
Background: Microsatellite instability-high (MSI-high) tumors comprise ~15% of sporadic colorectal cancers (CRC) and are associated with elevated T cell infiltration. However, the universality of this response across T cell subtypes with distinct functions is unknown.
Methods: Including 1,236 CRC tumors from three observational studies, we conducted T cell profiling using a customized 9-plex (CD3, CD4, CD8, CD45RA, CD45RO, FOXP3, KRT, MKI67, and DAPI) multispectral immunofluorescence assay.
Nat Med
January 2025
Department of Medicine-Medical Oncology, University of Colorado Cancer Center, Denver, CO, USA.
Effective targeting of somatic cancer mutations to enhance the efficacy of cancer immunotherapy requires an individualized approach. Autogene cevumeran is a uridine messenger RNA lipoplex-based individualized neoantigen-specific immunotherapy designed from tumor-specific somatic mutation data obtained from tumor tissue of each individual patient to stimulate T cell responses against up to 20 neoantigens. This ongoing phase 1 study evaluated autogene cevumeran as monotherapy (n = 30) and in combination with atezolizumab (n = 183) in pretreated patients with advanced solid tumors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!