Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: We conducted a systematic literature review with indirect comparison of studies evaluating therapeutic efficacy and toxicity associated to visceral leishmaniasis (VL) therapy among HIV infected individuals.
Main Outcome Measurements: The outcomes of interest were clinical and parasitological cure, mortality, and adverse events.
Methods: PRISMA guidelines for systematic reviews and Cochrane manual were followed. Sources were MEDLINE, LILACS, EMBASE, Web of Knowledge databases and manual search of references from evaluated studies. We included all studies reporting outcomes after VL treatment, regardless of their design. Study quality was evaluated systematically by using the Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomized studies in meta-analyses. Comprehensive Meta-Analysis software v.2.2.048 was used to perform one-group meta-analysis of study arms with the same drug to estimate global rates of success and adverse events with each drug. These estimates were used, when possible, to indirectly compare treatment options, adjusted for CD4 count. Direct comparison was pooled when available.
Results: Seventeen studies reporting five treatment regimens and outcome of 920 VL episodes occurring in HIV infected individuals were included. The main outstanding difference in outcome among the treatment regimens was observed in mortality rate: it was around 3 times higher with high-dose antimony use (18.4%, CI 95% 13.3-25%), indirectly compared to lipid formulations of amphotericin B treatment (6.1%, CI 95% 3.9-9.4%). It was observed, also by indirect comparison, higher rates of clinical improvement in study arms using amphotericin B than in study arms using pentavalent antimonial therapy (Sb(v)). The parasitological cure, an outcome that presented some degree of risk of selection and verification bias, had rates that varied widely within the same treatment arm, with high heterogeneity, hampering any formal comparison among drugs. One direct comparison of amphotericin and antimoniate was possible combining results of two studies and confirming the superiority of amphotericin.
Conclusions: Available evidence suggests that amphotericin is superior to antimony treatment. Death rate using antimoniate high dose is unacceptably high. Randomized controlled trials are necessary to compare different formulations and doses of amphotericin, alternative therapies and drug combinations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3642227 | PMC |
http://dx.doi.org/10.1371/journal.pntd.0002195 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!