Androgen receptor (AR) signaling pathway remains the foremost target of novel therapeutics for castration-resistant prostate cancer (CRPC). However, the expression of constitutively active AR variants lacking the carboxy-terminal region in CRPC may lead to therapy inefficacy. These AR variants are supposed to support PCa cell growth in an androgen-depleted environment, but their mode of action still remains unresolved. Moreover, recent studies indicate that constitutively active AR variants are expressed in primary prostate tumors and may contribute to tumor progression. The aim of this study was to investigate the impact of constitutively active AR variants on the expression of tumor progression markers. N-cadherin expression was analyzed in LNCaP cells overexpressing the wild type AR or a constitutively active AR variant by qRT-PCR, Western blot and immunofluorescence. We showed here for the first time that N-cadherin expression was increased in the presence of constitutively active AR variants. These results were confirmed in C4-2B cells overexpressing these AR variants. Although N-cadherin expression is often associated with a downregulation of E-cadherin, this phenomenon was not observed in our model. Nevertheless, in addition to the increased expression of N-cadherin, an upregulation of other mesenchymal markers expression such as VIMENTIN, SNAIL and ZEB1 was observed in the presence of constitutively active variants. In conclusion, our findings highlight novel consequences of constitutively active AR variants on the regulation of mesenchymal markers in prostate cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3642121PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0063466PLOS

Publication Analysis

Top Keywords

constitutively active
32
active variants
24
mesenchymal markers
12
prostate cancer
12
n-cadherin expression
12
variants
9
constitutively
8
androgen receptor
8
expression
8
markers prostate
8

Similar Publications

Head and neck squamous cell carcinoma (HNSCC) is the seventh most common cancer worldwide with a poor prognosis for survival. Risk factors include alcohol and tobacco abuse and infection with human papilloma virus (HPV). To enhance anti-tumor immune responses immunotherapeutic approaches are approved for recurrent metastatic disease but only approx.

View Article and Find Full Text PDF

BRAF mutations in colorectal cancer (CRC) comprise three functional classes: Class 1 (V600E) with strong constitutive activation, Class 2 with pathogenic kinase activity lower than Class 1, and Class 3 which paradoxically lacks kinase activity. Non-Class 1 mutations associate with better prognosis, microsatellite stability, distal tumour location and better anti-EGFR response. Analysis of 13 CRC cohorts (n=6,605 tumours) compared Class 1 (n=709, 10.

View Article and Find Full Text PDF

Progranulin is a secreted pro-protein that is necessary for maintaining lysosomal function and exerts anti-inflammatory and neurotrophic effects in the brain. Loss-of-function GRN mutations, most of which cause progranulin haploinsufficiency, are a major autosomal dominant cause of frontotemporal dementia (FTD). Other GRN variants are associated with risk for FTD, Alzheimer's disease (AD) and Parkinson's disease.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.

Background: Patients with Alzheimer's Disease and related dementias associated with the accumulation of pathological tau (tauopathies) in neurons have an increased incidence of epileptic episodes and sub-clinical epileptiform activity. This neuronal hyperexcitability represents some of the earliest changes in patient brains, is associated with more severe symptoms, and presents an opportunity for early therapeutic intervention. Despite these provocative observations, the molecular details of how tau and neuronal excitability are connected in tauopathies remain unknown.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Columbia University Medical Center, New York, NY, USA.

Background: The ubiquitin-proteasome system (UPS) is the primary protein degrading mechanism in eukaryotes, and is essential for cellular homeostasis. Dysregulation of the UPS has been linked to neurodegeneration through two hallmarks, pathogenic protein aggregation and aberrant proteostasis. However, the molecular changes that alter proteasome functioning in AD are poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!