We investigate the dynamics of a synthetic genetic repressilator with quorum sensing feedback. In a basic genetic ring oscillator network in which three genes inhibit each other in unidirectional manner, an additional quorum sensing feedback loop stimulates the activity of a chosen gene providing competition between inhibitory and stimulatory activities localized in that gene. Numerical simulations show several interesting dynamics, multi-stability of limit cycle with stable steady-state, multi-stability of different stable steady-states, limit cycle with period-doubling and reverse period-doubling, and infinite period bifurcation transitions for both increasing and decreasing strength of quorum sensing feedback. We design an electronic analog of the repressilator with quorum sensing feedback and reproduce, in experiment, the numerically predicted dynamical features of the system. Noise amplification near infinite period bifurcation is also observed. An important feature of the electronic design is the accessibility and control of the important system parameters.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3642084 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0062997 | PLOS |
J Biomol Struct Dyn
February 2025
Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, India.
is one of the opportunistic pathogens that may cause serious health problems and can produce several virulence factors, which are responsible for various infections, particularly in immunocompromised patients. They are responsible for producing infections on indwelling medical devices by attaching on to them and forming a biofilm. Antibiofilm, antivirulence, and gene expression studies of biofilm treated with esters of flavonols were evaluated.
View Article and Find Full Text PDFFront Cell Infect Microbiol
December 2024
School of Biosciences, University of Kent, Canterbury, United Kingdom.
Introduction: Antimicrobial resistance is a growing health problem. Pseudomonas aeruginosa is a pathogen of major concern because of its multidrug resistance and global threat, especially in health-care settings. The pathogenesis and drug resistance of depends on its ability to form biofilms, making infections chronic and untreatable as the biofilm protects against antibiotics and host immunity.
View Article and Find Full Text PDFBioresour Technol
December 2024
Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China. Electronic address:
Quorum sensing-regulated microbial behaviors often negatively impact wastewater treatment, leading to issues such as biofouling in membrane bioreactors, filamentous bulking, and resistance gene transfer. Quorum quenching, which counteracts quorum sensing, offers a promising strategy to mitigate these problems. This review aims to highlight overlooked perspectives for its application in microbial aggregates during wastewater treatment.
View Article and Find Full Text PDFPeerJ
December 2024
The Thomas H. Gosnell School of Life Sciences, Biotechnology and Molecular Bioscience Program, College of Science, Rochester Institute of Technology, Rochester, New York, United States.
Background: A grapevine crown gall tumor strain, sp. strain Rr2-17 was previously reported to accumulate copious amounts of diverse quorum sensing signals during growth. Genome sequencing identified a single luxI homolog in strain Rr2-17, suggesting that it may encode for a AHL synthase with broad substrate range, pending functional validation.
View Article and Find Full Text PDFFront Pharmacol
December 2024
Department of Bacteriology and Virology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
Antimicrobial resistance (AMR) poses a significant global threat to public health systems, rendering antibiotics ineffective in treating infectious diseases. Combined use of bio compounds, including bacteriophages and plant extracts, is an attractive approach to controlling antibiotic resistance. In this study, the combination of phage cocktail (Isf-Pm1 and Isf-Pm2) and crude extract (AME) was investigated in controlling biofilm-forming multi-drug resistant isolates, and a phantom bladder model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!