Sediment microbial fuel cells (SMFCs) could be used as power sources and one type of new technology for the removal of organic matters in sediments. In order to improve electrode materials and enhance their effect on the performance, we deposited multi-walled carbon nanotube (MWNT) on stainless steel net (SSN). Electrophoretic deposition technique as a method with low cost, process simplicity, and thickness control was used for this electrode modification and produced this novel SSN-MWNT electrode. The performances of SMFCs with SSN-MWNT as electrode were investigated. The results showed that the maximum power density of SMFC with SSN-MWNT cathode was 31.6 mW m(-2), which was 3.2 times that of SMFC with an uncoated stainless steel cathode. However, no significant increase in the maximum power density of SMFC with SSN-MWNT anode was detected. Further electrochemical analysis showed that when SSN-MWNT was used as the cathode, the cathodic electrochemical activity and oxygen reduction rate were significantly improved. This study demonstrates that the electrophoretic deposition of carbon nanotubes on conductive substrate can be applied for improving the performance of SMFC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12010-013-0274-3 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan.
Apatite nanoparticles are biocompatible nanomaterials, so their film formation on biodevices is expected to provide effective bonding with living organisms. However, the biodevice-apatite interfaces have not yet been elucidated because there is little experimental evaluation and discussion on the nanoscale interactions, as well as the apatite surface reactivities. Our group has demonstrated the biomolecular adsorption properties on a quartz crystal microbalance with dissipation (QCM-D) sensor coated with apatite nanoparticles, demonstrating the applicability of apatite nanoparticle films on devices.
View Article and Find Full Text PDFJ Orthop Res
December 2024
Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois, USA.
Periprosthetic joint infection (PJI) is a leading cause and major complication of joint replacement failure. As opposed to standard-of-care systemic antibiotic prophylaxis for PJI, we developed and tested titanium femoral intramedullary implants with titania nanotubes (TNTs) coated with the antibiotic gentamicin and slow-release agent chitosan through electrophoretic deposition (EPD) in a mouse model of PJI. We hypothesized that these implants would enable local gentamicin delivery to the implant surface and surgical site, effectively preventing bacterial colonization.
View Article and Find Full Text PDFSci Rep
December 2024
ENET Centre, VSB- Technical University of Ostrava, Ostrava, Czech Republic.
The present investigation provides an easy and affordable strategy for fabrication of functional ceramics BiNaTiO-SrFeO (BNT-SrF5) thick films on a flexible, inexpensive and electrically integrated substrate using electrophoretic deposition process (EPD). EPD is a widely accepted, environmentally friendly method for applying coatings from a colloidal suspension to conductive substrates. Lead-free ferroelectric BNT-SrF5 powder was synthesized by solid state method to fabricate bulk samples and thick films (30-160 μm) by EPD process.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Materials Science and Engineering, Faculty of Engineering & Technology, Tarbiat Modares Universirty, Tehran, Iran.
One of the most effective ways to solve the problems caused by the presence of steel implants in the body is to apply a coating to them. This study aims to develop and optimize composite coatings of magnesium oxide (MgO), 58S bioactive glass (BG), and N-carboxymethyl chitosan (N-CMC) on stainless steel (SS316L) substrates using the electrophoretic deposition (EPD) method. The synthesized materials were characterized using FTIR, XRD, and SEM to confirm their structure and morphology prior to coating.
View Article and Find Full Text PDFChemistry
December 2024
Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China.
Perovskite-based photodetectors (PDs) are broadly utilized in optical communication, non-destructive testing, and smart wearable devices due to their ability to convert light into electrical signals. However, toxicity and instability hold back their mass production and commercialization. The lead-free CsAgBiBr double perovskite film, promised to be an alternative, is fabricated by electrophoretic deposition (EPD), which compromises film quality.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!