The last decade has seen subwavelength focusing of the electromagnetic field in the proximity of nanoplasmonic structures with various designs. However, a shared issue is the spatial confinement of the field, which is mostly inflexible and limited to fixed locations determined by the geometry of the nanostructures, which hampers many applications. Here, we coherently address numerically and experimentally single and multiple plasmonic nanostructures chosen from a given array, resorting to the principle of optical eigenmodes. By decomposing the light field into optical eigenmodes, specifically tailored to the nanostructure, we create a subwavelength, selective and dynamic control of the incident light. The coherent control of plasmonic nanoantennas using this approach shows an almost zero crosstalk. This approach is applicable even in the presence of large transmission aberrations, such as present in holographic diffusers and multimode fibres. The method presents a paradigm shift for the addressing of plasmonic nanostructures by light.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3648803 | PMC |
http://dx.doi.org/10.1038/srep01808 | DOI Listing |
Nanophotonics
January 2025
Instituto de Micro y Nanotecnología IMN-CNM, CSIC, CEI UAM+CSIC, Tres Cantos, Spain.
Acoustoplasmonic resonators, such as nanobars and crosses, are efficient acousto-optical transducers. The excitation of mechanical modes in these structures strongly depends on the spatial profile of the eigenmodes of the resonator. Using a system of two identical gold elongated bars placed on a silicon dioxide substrate, we examine how breaking mirror symmetries affects the optical and acoustic properties to provide insights in the design of acoustoplasmonic metasurfaces for nonsymmetric acousto-optical transducers.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physics, Shiraz university of technology, Shiraz, Iran.
A novel helically twisted photonic crystal fiber (PCF) is designed and proposed for sensing toxic gases with refractive indices ranging from 1.00 to 1.08.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China.
The hybrid skin-topological effect (HSTE) has recently been proposed as a mechanism where topological edge states collapse into corner states under the influence of the non-Hermitian skin effect (NHSE). However, directly observing this effect is challenging due to the complex frequencies of eigenmodes. In this study, we experimentally observe HSTE corner states using synthetic complex frequency excitations in a transmission line network.
View Article and Find Full Text PDFNano Lett
January 2025
Instituto de Química Física Blas Cabrera (IQF), CSIC, 28006 Madrid, Spain.
We investigate the emergence of self-hybridized thermal magnetoplasmons in doped graphene nanodisks at finite temperatures upon being subjected to an external magnetic field. Using a semianalytical approach, which fully describes the eigenmodes and polarizability of the graphene nanodisks, we show that the hybridization originates from the coupling of transitions between thermally populated Landau levels and localized magnetoplasmon resonances of the nanodisks. Owing to their origin, these modes combine the extraordinary magneto-optical response of graphene with the strong field enhancement of plasmons, making them an ideal tool for achieving strong chiral light-matter interactions, with the additional advantage of being tunable through carrier concentration, magnetic field, and temperature.
View Article and Find Full Text PDFNanophotonics
August 2024
University College London, London, UK.
Dielectric metasurfaces open new avenues in nonlinear optics through their remarkable capability of boosting frequency conversion efficiency of nonlinear optical interactions. Here, a metasurface consisting of a square array of cruciform-shaped silicon building blocks covered by a monolayer MoS is proposed. By designing the metasurface so that it supports optical bound states in the continuum (BICs) at the fundamental frequency and second harmonic, nearly 600× enhancement of the second-harmonic generation (SHG) in the MoS monolayer as compared to that of the same MoS monolayer suspended in air is achieved.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!