Decline in the permeability in nanofiltration (NF)/reverse osmosis (RO) membranes that filtered effluents from a membrane bioreactor (MBR) treating municipal wastewater was investigated in this study. Four different 2-inch spiral-wound NF/RO membrane elements were continuously operated for 40 days. The results showed that the amount of deposits on the membrane surface did not affect the degree of permeability decline. Laboratory-scale filtration tests with coupons obtained from the fouled membranes also revealed that the contribution of the gel/cake layer to total filtration resistance was minor. Rather, constituents that were strongly bound to the membranes were mainly responsible for permeability decline. Chemical cleaning of the fouled membranes carried out after removal of the cake showed that silica played an important role in the decline in permeability. A considerable amount of organic matter which was mainly composed of carbohydrates and proteins was also desorbed from the fouled membranes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2166/wst.2013.080 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!