Cellular homeostasis requires intrinsic sensing mechanisms to temper function in the face of prolonged activity. In the pancreatic β-cell, glucose is likely a physiological trigger that activates an adaptive response to stimulation, thereby maintaining cellular homeostasis. Immediate early genes (IEGs) are activated as a first line of defense in cellular homeostasis and are largely responsible for transmitting an environmental cue to a cellular response. Here we examine the regulation and function of the novel β-cell IEG, neuronal PAS domain protein 4 (Npas4). Using MIN6 cells, mouse and human islets, as well as in vivo infusions, we demonstrate that Npas4 is expressed within pancreatic islets and is upregulated by β-cell depolarizing agents. Npas4 tempers β-cell function through a direct inhibitory interaction with the insulin promoter and by blocking the potentiating effects of GLP-1 without significantly reducing glucose-stimulated secretion. Finally, Npas4 expression is induced by classical endoplasmic reticulum (ER) stressors and can prevent thapsigargin- and palmitate-induced dysfunction and cell death. These results suggest that Npas4 is a key activity-dependent regulator that improves β-cell efficiency in the face of stress. We posit that Npas4 could be a novel therapeutic target in type 2 diabetes that could both reduce ER stress and cell death and maintain basal cell function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3717850 | PMC |
http://dx.doi.org/10.2337/db12-1527 | DOI Listing |
J Math Biol
January 2025
Institut universitaire de France (IUF), Paris, France.
We build and study an individual based model of the telomere length's evolution in a population across multiple generations. This model is a continuous time typed branching process, where the type of an individual includes its gamete mean telomere length and its age. We study its Malthusian's behaviour and provide numerical simulations to understand the influence of biologically relevant parameters.
View Article and Find Full Text PDFSemin Immunopathol
January 2025
Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
Metabolic flexibility is key for the function of myeloid cells. Arginine metabolism is integral to the regulation of myeloid cell responses. Nitric oxide (NO) production from arginine is vital for the antimicrobial and pro-inflammatory responses.
View Article and Find Full Text PDFJ Cardiovasc Transl Res
January 2025
Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.
HFpEF is a prevalent and complex type of heart failure. The concurrent presence of conditions such as obesity, hypertension, hyperglycemia, and hyperlipidemia significantly increase the risk of developing HFpEF. Mitochondria, often referred to as the powerhouses of the cell, are crucial in maintaining cellular functions, including ATP production, intracellular Ca regulation, reactive oxygen species generation and clearance, and the regulation of apoptosis.
View Article and Find Full Text PDFApoptosis
January 2025
Department of Cardiac Surgery, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan II Rd, Guangzhou, 510080, China.
Recent studies have suggested that sVEGFR3 is involved in cardiac diseases by regulating lymphangiogenesis; however, results are inconsistent. The aim of this study was to investigate the function and mechanism of sVEGFR3 in myocardial ischemia/reperfusion injury (MI/RI). sVEGFR3 effects were evaluated in vivo in mice subjected to MI/RI, and in vitro using HL-1 cells exposed to oxygen-glucose deprivation/reperfusion.
View Article and Find Full Text PDFCell Death Dis
January 2025
NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, 110004, China.
Metabolic rewiring underlies effective macrophages defense to respond disease microenvironment. However, the underlying mechanisms driving metabolic rewiring to enhance macrophage effector functions remain unclear. Here, we demonstrated that the metabolic reprogramming in inflammatory macrophages depended on the acetylation of CLYBL, a citramalyl-CoA lyase, at lysine 154 (K154), and blocking CLYBL-K154 acetylation restricted the release of pro-inflammatory factors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!