Post-translational attachment of small ubiquitin-like modifier (SUMO), defined as SUMOylation, has emerged as a new mechanism of protein regulation in plant biology. In plant, SUMOylation has been shown to play crucial roles in a variety of biotic and abiotic stress responses. Recent work using viable mutants with defective SUMOylation have indicated an important role for SUMOylation in a wide range of developmental processes, such as cell division, expansion, survival and differentiation, vegetative growth and reproductive development. This review will summarize the currently emerging information regarding the function of SUMOylation in plant development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3907438PMC
http://dx.doi.org/10.4161/psb.24727DOI Listing

Publication Analysis

Top Keywords

role sumoylation
8
sumoylation plant
8
plant development
8
sumoylation
6
emerging role
4
plant
4
development post-translational
4
post-translational attachment
4
attachment small
4
small ubiquitin-like
4

Similar Publications

Deciphering the endogenous SUMO-1 landscape: a novel combinatorial peptide enrichment strategy for global profiling and disease association.

Chem Sci

December 2024

State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 P. R. China

Small ubiquitin-like modifier (SUMO) plays a pivotal role in diverse cellular processes and is implicated in diseases such as cancer and neurodegenerative disorders. However, large-scale identification of endogenous SUMO-1 faces challenges due to limited enrichment methods and its lower abundance compared to SUMO-2/3. Here we propose a novel combinatorial peptide strategy, combined with anti-adhesive polymer development, to enrich endogenous SUMO-1 modified peptides, revealing a comprehensive SUMOylation landscape.

View Article and Find Full Text PDF

Reduction of glucose transporter 1 (GLUT1), even deletion, may results in cartilage fibrosis and osteoarthritis. This study aims to investigate the SUMOylation of GLUT1 in osteoarthritis through small ubiquitin-like modifier 1(SUMO1), and explore the role of SUMOylated GLUT1 in glycometabolism, proliferation and apoptosis in chondrocytes. Human chondrocytes were incubated with 10 ng/mL of IL-1β to mimic osteoarthritis in vitro.

View Article and Find Full Text PDF

Alzheimer's disease (AD), the most prevalent form of dementia in the elderly, involves critical changes such as reduced aerobic glycolysis in astrocytes and increased neuronal apoptosis, both of which are significant in the disease's pathology. In our study, astrocytes treated with amyloid β1-42 (Aβ) to simulate AD conditions exhibited upregulated expressions of small ubiquitin-like modifier (SUMO)-specific protease 1 (SENP1) and Pumilio RNA Binding Family Member 2 (PUM2), alongside decreased levels of Nuclear factor erythroid 2-related factor 2 (NRF2). SENP1 is notably the most upregulated SUMOylation enzyme in Aβ-exposed astrocytes.

View Article and Find Full Text PDF

E2 Ubiquitin-Conjugating Enzymes Regulates Dengue Virus-2 Replication in .

Microorganisms

December 2024

Program in Public Health, School of Medicine, University of California, Irvine, CA 92617, USA.

, a major vector of dengue virus (DENV), has a global distribution. Identifying the key components of the ubiquitin system of essential for the replication of viruses could help identify targets for developing broad-spectrum antiviral strategies. This study explores the interaction between E2 ubiquitin-conjugating enzymes (Ubc9) and DENV-2 proteins (NS1, NS5, and E) using cell culture and mosquito models.

View Article and Find Full Text PDF

SENP3: Cancers and diseases.

Biochim Biophys Acta Rev Cancer

January 2025

Kunming University of Science and Technology, Medical School, Kunming 650500, China. Electronic address:

SUMOylation is a protein modification process that involves the covalent attachment of a small ubiquitin-like modifier (SUMO) to a specific lysine residue on the target protein. This modification can influence the function, localization, stability, and interactions of proteins, thereby regulating various cellular processes. Altering the SUMOylation of certain proteins is expected to be a potential approach for treating specific cancers and diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!