Laser shock Hugoniot data were obtained using ultrafast dynamic ellipsometry (UDE) for both nonideal (ethanol/water solutions with mole percent χ(ethanol) = 0%, 3.4%, 5.4%, 7.5%, 9.7%, 11%, 18%, 33%, 56%, 100%) and ideal liquid mixtures (toluene/fluorobenzene solutions with mole percent χ(toluene) = 0%, 26.0%, 49.1%, 74.9%, 100%). The shock and particle velocities obtained from the UDE data were compared to the universal liquid Hugoniot (ULH) and to literature shock (plate impact) data where available. It was found that the water UDE data fit to a ULH-form equation suggests an intercept of 1.32 km/s, lower than the literature ambient sound speed in water of 1.495 km/s (Mijakovic et al. J. Mol. Liq. 2011, 164, 66-73). Similarly, the ethanol UDE data fit to a ULH-form equation suggests an intercept of 1.45 km/s, which lies above the literature ambient sound speed in ethanol of 1.14 km/s. Both the literature plate impact and UDE Hugoniot data lie below the ULH for water. Likewise, the literature plate impact and UDE Hugoniot data lie above the ULH for ethanol. The UDE Hugoniot data for the mixtures of water and ethanol cross the predictions of the ULH near the same concentration where the sound speed reaches a maximum. In contrast, the UDE data from the ideal liquids and their mixtures are well behaved and agree with ULH predictions across the concentration range. The deviations of the nonideal ethanol/water data from the ULH suggest that complex hydrogen bonding networks in ethanol/water mixtures alter the compressibility of the mixture.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp400310k | DOI Listing |
Phys Rev E
September 2024
Terminal Effects Division, DEVCOM ARL, Aberdeen Proving Ground, Maryland 21005-5066, USA.
A continuum mixture theory is formulated for large deformations, thermal effects, phase interactions, and degradation of soft biologic tissues suitable at high pressures and low to very high strain rates. Tissues consist of one or more solid and fluid phases and can demonstrate nonlinear anisotropic elastic, viscoelastic, thermoelastic, and poroelastic physics. Under extreme deformations or shock loading, tissues may fracture, tear, or rupture.
View Article and Find Full Text PDFJ Chem Phys
August 2024
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
We present an Atomic Cluster Expansion (ACE) machine learned potential developed for high-fidelity atomistic simulations of hydrocarbons, targeting pressures and temperatures near and above supercritical fluid regimes for molecular fluids. A diverse set of stoichiometries were covered in training, including 1:0 (pure carbon), 1:4 (methane), and 1:1 (benzene), and rich bonding environments sampled at supercritical temperatures, hydrogen rich, reactive mixtures where metastable stoichiometries arise, including 1:2 (ethylene) and 1:3 (ethane). A high-fidelity training database was constructed by performing large-scale quantum molecular dynamic simulations [density functional theory (DFT) MD] of diamond, graphite, methane, and benzene.
View Article and Find Full Text PDFSci Adv
June 2024
Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
Magnesium oxide (MgO) is a major component of the Earth's mantle and is expected to play a similar role in the mantles of large rocky exoplanets. At extreme pressures, MgO transitions from the NaCl 1 crystal structure to a CsCl 2 structure, which may have implications for exoplanetary deep mantle dynamics. In this study, we constrain the phase diagram of MgO with laser-compression along the shock Hugoniot, with simultaneous measurements of crystal structure, density, pressure, and temperature.
View Article and Find Full Text PDFPhys Rev Lett
December 2023
Key Laboratory of Photochemistry, Institute of Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China.
The Grüneisen parameter (γ) is crucial for determining many thermal properties, including the anharmonic effect, thermostatistics, and equation of state of materials. However, the isentropic adiabatic compression conditions required to measure the Grüneisen parameter under high pressure are difficult to achieve. Thus, direct experimental Grüneisen parameter data in a wide range of pressures is sparse.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2024
N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygin St. 4, 119991 Moscow, Russia.
The shock-loading behavior of nanomaterials requires careful investigation because these complex systems are widely used in environments subjected to impulsive loads. Planar plate impact experiments are conducted to study shock compaction waves in 94% porous nickel powder containing spherical ∼55 nm particles in the pressure and strain rate ranges of 0.1-0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!