Piezopolymer-based hydrophone arrays consisting of 20 elements were fabricated and tested for use in measuring the acoustic field from a shock-wave lithotripter. The arrays were fabricated from piezopolymer films and were mounted in a housing to allow submersion into water. The motivation was to use the array to determine how the shot-to-shot variability of the spark discharge in an electrohydraulic lithotripter affects the resulting focused acoustic field. It was found that the dominant effect of shot-to-shot variability was to laterally shift the location of the focus by up to 5 mm from the nominal acoustic axis of the lithotripter. The effect was more pronounced when the spark discharge was initiated with higher voltages. The lateral beamwidth of individual, instantaneous shock waves were observed to range from 1.5 mm to 24 mm. Due to the spatial variation of the acoustic field, the average of instantaneous beamwidths were observed to be 1 to 2 mm narrower than beamwidths determined from traditional single-point measurements that average the pressure measured at each location before computing beamwidth.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3663848PMC
http://dx.doi.org/10.1121/1.4795801DOI Listing

Publication Analysis

Top Keywords

acoustic field
16
electrohydraulic lithotripter
8
shot-to-shot variability
8
spark discharge
8
acoustic
5
single-shot measurements
4
measurements acoustic
4
field
4
field electrohydraulic
4
lithotripter
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!