Dynamic surface acoustic response to a thermal expansion source on an anisotropic half space.

J Acoust Soc Am

Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210, USA.

Published: May 2013

The surface displacement response to a distributed thermal expansion source is solved using the reciprocity principle. By convolving the strain Green's function with the thermal stress field created by an ultrafast laser illumination, the complete surface displacement on an anisotropic half space induced by laser absorption is calculated in the time domain. This solution applies to the near field surface displacement due to pulse laser absorption. The solution is validated by performing ultrafast laser pump-probe measurements and showing very good agreement between the measured time-dependent probe beam deflection and the computed surface displacement.

Download full-text PDF

Source
http://dx.doi.org/10.1121/1.4799019DOI Listing

Publication Analysis

Top Keywords

surface displacement
16
thermal expansion
8
expansion source
8
anisotropic half
8
half space
8
ultrafast laser
8
laser absorption
8
dynamic surface
4
surface acoustic
4
acoustic response
4

Similar Publications

Background: Motion complexity is necessary for adapting to external changes, but little is known about trunk motion complexity during seated perturbation in individuals with spinal cord injury (SCI). We aimed to investigate changes following SCI in trunk segmental motion complexity across different perturbation directions and how they affect postural control ability in individuals with SCI.

Methods: A total of 17 individuals with SCI and 18 healthy controls participated in challenging sagittal-seated perturbations with hand protection.

View Article and Find Full Text PDF

Multidrug resistance-associated protein 2 (MRP2) is an ATP-powered exporter important for maintaining liver homeostasis and a potential contributor to chemotherapeutic resistance. Using cryogenic electron microscopy (cryo-EM), we determine the structures of human MRP2 in three conformational states: an autoinhibited state, a substrate-bound pre-translocation state, and an ATP-bound post-translocation state. In the autoinhibited state, the cytosolic regulatory (R) domain plugs into the transmembrane substrate-binding site and extends into the cytosol to form a composite ATP-binding site at the surface of nucleotide-binding domain 2.

View Article and Find Full Text PDF

Purpose: This study aims to address the challenging estimation of trajectories from freehand ultrasound examinations by means of registration of automatically generated surface points. Current approaches to inter-sweep point cloud registration can be improved by incorporating heatmap predictions, but practical challenges such as label-sparsity or only partially overlapping coverage of target structures arise when applying realistic examination conditions.

Methods: We propose a pipeline comprising three stages: (1) Utilizing a Free Point Transformer for coarse pre-registration, (2) Introducing HeatReg for further refinement using support point clouds, and (3) Employing instance optimization to enhance predicted displacements.

View Article and Find Full Text PDF

Background And Objectives: Härtel triangle provides surface landmarks for locating the foramen ovale (FO) when performing trigeminal nerve percutaneous procedures. Although widely adopted in clinical practice, there is no report that these landmarks have ever been formally validated through modern imaging techniques. Here we aim to validate Härtel anatomical landmarks using computed tomography scans and propose technical considerations for percutaneous trigeminal procedures.

View Article and Find Full Text PDF

This article looked at how insert mounting errors affect the cutting tool performance in the face milling of 1.0503 steel. This study was conducted for 490-050Q22-08M inserts mounted in a Sandvik Coromant 490-050Q22-08M CoroMill cutter attached to an AVIA VMC 800 vertical milling center.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!