Human chromosome fragments (hCFs) and human artificial chromosomes (HACs) can be transferred into mouse ES cells to produce trans-chromosomic (Tc) mice. Although hCFs and HACs containing large genomic DNAs can be autonomously maintained in Tc mice, their retention rate is variable in mouse ES cell lines and Tc mouse tissues, possibly because of centromere differences between the species. To improve the retention rate of artificial chromosomes in mouse cells, we constructed novel mouse artificial chromosome (MAC) vectors by truncating a natural mouse chromosome at a site adjacent to the centromeric region. We obtained cell clones containing the MAC vectors that were stably maintained in mouse ES cells and various tissues in Tc mice. The MACs possess acceptor sites into which a desired gene or genes can be inserted. Thus, Tc mice harboring the MAC vectors may be valuable tools for functional analyses of desired genes, producing humanized model mice, and synthetic biology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/sb3000723 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!