Influence of boron on carrot cell wall structure and its resistance to fracture.

J Agric Food Chem

CSIRO Food Futures Flagship, North Ryde, Sydney, NSW 2113, Australia.

Published: August 2010

Plant cell wall structure integrity and associated tissue mechanical properties is one of key determinants for the perceived texture of plant-based foods. Carrots (Daucus carota) were used to investigate the effect of mineral supply of boron (B) and/or calcium (Ca), during plant growth, on the plant cell wall structure and mechanical properties of matured root tissues. Five commercial cultivars of carrots, Kuroda (orange), Dragon Purple, Kuttiger White, Yellow, and Nutri-Red, were cultivated under controlled glasshouse conditions over two seasons. Significant increases in the accumulation of B and Ca were found for all cultivars of carrots when additional B and Ca were included in the nutrient feeding solutions throughout the plant growth period. Elevated levels of B in carrot root tissue reduced the uptake of Ca and other mineral nutrients and enhanced plant cell wall structural integrity, its resistance to fracture, and the weight and size (both diameter and length) of carrots. Although higher amounts of Ca were accumulated in the plant materials, the additional supply of Ca did not have a significant effect on the mechanical properties of mature plant tissues or on the uptake of B by the plant. The results suggest that B cross-linking of pectin (rhamnogalacturonan II) has a greater influence on mature tissue mechanical properties than Ca cross-linking of pectin (homogalacturonan) when supplied during plant growth.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf100688tDOI Listing

Publication Analysis

Top Keywords

cell wall
16
mechanical properties
16
wall structure
12
plant cell
12
plant growth
12
plant
9
resistance fracture
8
tissue mechanical
8
cultivars carrots
8
cross-linking pectin
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!