The brain has to analyze and respond to external events that can change rapidly from time to time, suggesting that information processing by the brain may be essentially dynamic rather than static. The dynamical features of neural computation are of significant importance in motor cortex that governs the process of movement generation and learning. In this paper, we discuss these features based primarily on our recent findings on neural dynamics and information coding in the microcircuit of rat motor cortex. In fact, cortical neurons show a variety of dynamical behavior from rhythmic activity in various frequency bands to highly irregular spike firing. Of particular interest are the similarity and dissimilarity of the neuronal response properties in different layers of motor cortex. By conducting electrophysiological recordings in slice preparation, we report the phase response curves (PRCs) of neurons in different cortical layers to demonstrate their layer-dependent synchronization properties. We then study how motor cortex recruits task-related neurons in different layers for voluntary arm movements by simultaneous juxtacellular and multiunit recordings from behaving rats. The results suggest an interesting difference in the spectrum of functional activity between the superficial and deep layers. Furthermore, the task-related activities recorded from various layers exhibited power law distributions of inter-spike intervals (ISIs), in contrast to a general belief that ISIs obey Poisson or Gamma distributions in cortical neurons. We present a theoretical argument that this power law of in vivo neurons may represent the maximization of the entropy of firing rate with limited energy consumption of spike generation. Though further studies are required to fully clarify the functional implications of this coding principle, it may shed new light on information representations by neurons and circuits in motor cortex.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3642500 | PMC |
http://dx.doi.org/10.3389/fncir.2013.00085 | DOI Listing |
Neuroscience
January 2025
Kansai University of Health Sciences, Faculty of Health Sciences, Department of Physical Therapy, 2-11-1 Wakaba Sennangun Kumatori, Osaka 590-0482, Japan; Graduate School of Kansai University of Health Sciences, Graduate School of Health Sciences, 2-11-1 Wakaba Sennangun Kumatori, Osaka 590-0482, Japan.
Elderly adults may have poorer recall ability than young adults and may not fully enjoy the effects of motor imagery. To understand the age bias of the effect of motor imagery on hand dexterity, we evaluated brain activation and spinal motor nerve excitability. Brain activation was evaluated from changes in oxygenated hemoglobin concentration, while spinal motor nerve excitability was evaluated from F-waves in eight young (mean age 21.
View Article and Find Full Text PDFThe effect of Constraint-induced movement therapy (CIMT) or Intermittent theta-burst stimulation (iTBS) alone is limited in improving motor function after a stroke. In this study, we explored the efficacy and possible mechanisms in combination of CIMT and iTBS through behavioral evaluation, RNA sequencing, Golgi staining, transmission electronic microscope (TEM), high-performance liquid chromatography (HPLC), western blotting (WB) and immunofluorescence. Firstly, we observed that combination therapy is safe and effective, and it can significantly reduce the number of immature dendritic spines and increase the number of functional dendritic spines, the amount of glutamate (Glu) and the expression of Glu1 receptor (Glu1R).
View Article and Find Full Text PDFPediatr Neurol
January 2025
Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Shaanxi Engineering Research Center of Computational Imaging and Medical Intelligence, Xi'an, China. Electronic address:
Background: Preterm infants are at high risk for subsequent neurodevelopmental disability. Early developmental characterization of brain and neurobehavioral function is critical for identifying high-risk infants. This study aimed to elucidate the early evolution of sensorimotor function in preterm neonates by exploring postnatal age-related changes in the brain white matter (WM) and neurobehavioral abilities.
View Article and Find Full Text PDFSci Rep
January 2025
Support Centre for Advanced Neuroimaging (SCAN), Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
This study aims to establish an imitation task of multi-finger haptics in the context of regular grasping and regrasping processes during activities of daily living. A video guided the 26 healthy, right-handed volunteers through the three phases of the task: (1) fixation of a hand holding a cuboid, (2) observation of the sensori-motor manipulation, (3) imitation of that motor action. fMRI recorded the task; graph analysis of the acquisitions revealed the associated functional cerebral connectivity patterns.
View Article and Find Full Text PDFEpilepsy Res
January 2025
Epilepsy Program, Division of Neurology, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada. Electronic address:
Background: Direct cortical electrical stimulation remains the gold standard for delineation of the primary motor cortex in patients with drug-resistant epilepsy (DRE) undergoing epilepsy surgery evaluation OBJECTIVE: This study aimed to explore the efficacy and safety of functional motor mapping through Stereo-EEG (SEEG) electrode contacts in children with DRE at our institute.
Methods: We performed a retrospective analysis of children who underwent SEEG evaluation and functional cortical mapping via bipolar electrical stimulation at our institution between July 2020 and June 2024. Detailed clinical, radiological and neurophysiological variable were extracted; qualitative and quantitative variables were summarized using appropriate descriptive statistics.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!