Five gene products are required for assembly of the central pyrrole moiety of coumermycin A1.

J Ind Microbiol Biotechnol

Pharmaceutical Institute, University of Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany.

Published: August 2013

Coumermycin A1 is an aminocoumarin antibiotic produced by Streptomyces rishiriensis. It exhibits potent antibacterial and anticancer activity. The coumermycin A1 molecule contains two terminal 5-methyl-pyrrole-2-carboxylic acid moieties and one central 3-methylpyrrole-2,4-dicarboxylic acid moiety (CPM). While the biosynthesis of the terminal moieties has been elucidated in detail, the pathway leading to the CPM remains poorly understood. In this work, the minimal set of genes required for the generation of the CPM scaffold was identified. It comprises the five genes couR1, couR2a, couR2b, couR3, and couR4 which are grouped together in a contiguous 4.7 kb region within the coumermycin A1 biosynthetic gene cluster. The DNA fragment containing these genes was cloned into an expression plasmid and heterologously expressed in Streptomyces coelicolor M1146. Thereupon, the formation of CPM could be shown by HPLC and by HPLC-MS/MS, in comparison to an authentic CPM standard. This proves that the genes couR1-couR4 are sufficient to direct the biosynthesis of CPM, and that the adjacent genes couR5 and couR6 are not required for this pathway. The enzyme CouR3 was expressed in Escherichia coli and purified to near homogeneity. The protein exhibited an ATPase activity similar to that reported for its close ortholog, the threonine kinase PduX. However, we could not show a threonine kinase activity of CouR3, and; therefore, the substrate of CouR3 in CPM biosynthesis is still unknown and may be different from threonine.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10295-013-1266-6DOI Listing

Publication Analysis

Top Keywords

cpm biosynthesis
8
threonine kinase
8
cpm
7
genes
5
gene products
4
products required
4
required assembly
4
assembly central
4
central pyrrole
4
pyrrole moiety
4

Similar Publications

Supraphysiological concentrations of calciprotein particles (CPPs), which are indispensable scavengers of excessive Ca and PO ions in blood, induce pro-inflammatory activation of endothelial cells (ECs) and monocytes. Here, we determined physiological levels of CPPs (10 μg/mL calcium, corresponding to 10% increase in Ca in the serum or medium) and investigated whether the pathological effects of calcium stress depend on the calcium delivery form, such as Ca ions, albumin- or fetuin-centric calciprotein monomers (CPM-A/CPM-F), and albumin- or fetuin-centric CPPs (CPP-A/CPP-F). The treatment with CPP-A or CPP-F upregulated transcription of pro-inflammatory genes (, , , , , , , ) and promoted release of pro-inflammatory cytokines (IL-6, IL-8, MCP-1/CCL2, and MIP-3α/CCL20) and pro- and anti-thrombotic molecules (PAI-1 and uPAR) in human arterial ECs and monocytes, although these results depended on the type of cell and calcium-containing particles.

View Article and Find Full Text PDF

Recent improvements in the accuracy of long-read sequencing (LRS) technologies have expanded the scope for novel transcriptional isoform discovery. Additionally, these advancements have improved the precision of transcript quantification, enabling a more accurate reconstruction of complex splicing patterns and transcriptomes. Thus, this project aims to take advantage of these analytical developments for the discovery and analysis of RNA isoforms in the human brain.

View Article and Find Full Text PDF

Collagenases are responsible for collagen degradation, resulting in shrimp muscle softening after death. In this study, biochemical characteristics of collagenases purified from hepatopancreas (CPH) and muscle (CPM) of Litopenaeus vannamei were comparatively investigated. Changes of enzyme activity in shrimp hepatopancreas and muscle presented totally different tendencies, which decreased and increased respectively.

View Article and Find Full Text PDF

Background: External validations are essential to assess the performance of a clinical prediction model (CPM) before deployment. Apart from model misspecification, also differences in patient population, the standard of care, predictor definitions, and other factors influence a model's discriminative ability, as commonly quantified by the AUC (or c-statistic). We aimed to quantify the variation in AUCs across sets of external validation studies and propose ways to adjust expectations of a model's performance in a new setting.

View Article and Find Full Text PDF

Although DNA methyltransferase 1 (DNMT1) and RNA editor ADAR triplications exist in Down syndrome (DS), their specific roles remain unclear. DNMT methylates DNA, yielding S-adenosine homocysteine (SAH), subsequently converted to homocysteine (Hcy) and adenosine by S-adenosine homocysteine (Hcy) hydrolase (SAHH). ADAR converts adenosine to inosine and uric acid.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!