The purpose of this study was to test whether brain laterality influences spontaneous recovery of hand motor function after controlled brain injuries to arm areas of M1 and lateral premotor cortex (LPMC) of the hemisphere contralateral to the preferred hand in rhesus monkeys. We hypothesized that monkeys with stronger hand preference would exhibit poorer recovery of skilled hand use after such brain injury. Degree of handedness was assessed using a standard dexterity board task in which subjects could use either hand to retrieve small food pellets. Fine hand/digit motor function was assessed using a modified dexterity board before and after the M1 and LPMC lesions in ten monkeys. We found a strong negative relationship between the degree of handedness and the recovery of manipulation skill, demonstrating that higher hand preference was associated with poorer recovery of hand fine motor function. We also observed that monkeys with larger lesions within M1 and LPMC had greater initial impairment of manipulation and poorer recovery of reaching skill. We conclude that monkeys with a stronger hand preference are likely to show poorer recovery of contralesional hand fine motor skill after isolated brain lesions affecting the lateral frontal motor areas. These data may be extended to suggest that humans who exhibit weak hand dominance, and perhaps individuals who use both hands for fine motor tasks, may have a more favorable potential for recovery after a unilateral stroke or brain injury affecting the lateral cortical motor areas than individuals with a high degree of hand dominance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4799493 | PMC |
http://dx.doi.org/10.1007/s00221-013-3533-1 | DOI Listing |
Trials
January 2025
Department of Physiotherapy, Melbourne School of Health Science, University of Melbourne, Melbourne, Australia.
Background: Non-invasive ventilation (NIV) uses positive pressure to assist people with respiratory muscle weakness or severe respiratory compromise to breathe. Most people use this treatment during sleep when breathing is most susceptible to instability. The benefits of using NIV in motor neurone disease (MND) are well-established.
View Article and Find Full Text PDFJ Neuroeng Rehabil
January 2025
Division of Rehabilitation Medicine, Department of Medicine, National University Hospital, Singapore, Singapore.
Background: Despite the reported efficacy of overground robotic exoskeleton (ORE) for rehabilitation of mobility post-stroke, its effectiveness in real-world practice is still debated. We analysed prospectively collected data from Improving Mobility Via Exoskeleton (IMOVE), a multicentre clinical implementation programme of ORE enrolling participants with various neurological conditions and were given options to choose between 12 sessions of ORE or conventional therapy (control).
Methods: This is analysis of participants under IMOVE who fulfilled the following criteria (i) primary diagnosis was stroke (ischemic, hemorrhagic; first or recurrent), (ii) onset of stroke was within 9 months and (iii) the intervention was during inpatient stay.
J Neuroeng Rehabil
January 2025
Hulse Spinal Cord Injury Research Lab, Shepherd Center, 2020 Peachtree Road NW, Atlanta, GA, USA.
Background: There is growing interest in use of transcutaneous spinal stimulation (TSS) for people with neurologic conditions both to augment volitional control (by facilitating motoneuron excitability), and to decrease spasticity (by activating inhibitory networks). Various electrode montages are used during TSS, with little understanding of how electrode position influences spinal circuit activation. We sought to identify the thoracolumbar electrode montage associated with the most robust activation of spinal circuits by comparing posterior root-muscle reflexes (PRM reflexes) elicited by 6 montages.
View Article and Find Full Text PDFBMC Neurol
January 2025
Department of Neurology, School of Medicine, Immunogenetic Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
Introduction: Cerebral ischemic strokes cause brain damage, primarily through inflammatory factors. One of the regions most affected by middle cerebral artery occlusion (MCAO) is the hippocampus, specifically the CA1 area, which is highly susceptible to ischemia. Previous studies have demonstrated the anti-inflammatory properties of quercetin.
View Article and Find Full Text PDFSupport Care Cancer
January 2025
S' Clinic, Guangzhou, 510000, China.
Purpose: This study aims to explore the effects of Tai Chi Chuan (TCC) on physical function, hematological metabolic biomarkers, sleep quality, and mental health in breast cancer patients.
Methods: This was a prospective clinical trial that involved 37 breast cancer patients who had completed surgery treatment. Participants' motor function, hematological examination, and self-rated questionnaire were assessed at the baseline and after the intervention.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!