Background: X-linked adrenoleukodystrophy (X-ALD) is a recessive neurodegenerative disorder that affects the brain's white matter and is associated with adrenal insufficiency. It is characterized by an abnormal function of the peroxisomes, which leads to an accumulation of very long-chain fatty acids (VLCFA) in plasma and tissues, especially in the cortex of the adrenal glands and the white matter of the central nervous system, causing demyelinating disease and adrenocortical insufficiency (Addison's disease). X-ALD is caused by a mutation in the ABCD1 gene (ATP-binding cassette, subfamily D, member 1), which encodes the adrenoleukodystrophy protein involved in the transport of fatty acids into the peroxisome for degradation.

Objective: We report here a disease-related variant in the ABCD1 gene in a 19-year-old Tunisian boy with childhood cerebral adrenoleukodystrophy.

Methods: The diagnosis was based on clinical symptoms, high levels of VLCFA in plasma, typical MRI pattern and molecular analysis.

Results: Molecular analysis by direct sequencing of the ABCD1 gene showed the presence of a novel missense mutation c.284C>A (p.Ala95Asp) occurring in the transmembrane domain in the proband, his mother and his sister.

Conclusion: Using bioinformatic tools we suggest that this novel variant may have deleterious effects on adrenoleukodystrophy protein structure and function.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000346680DOI Listing

Publication Analysis

Top Keywords

abcd1 gene
16
x-linked adrenoleukodystrophy
8
novel missense
8
missense mutation
8
mutation abcd1
8
white matter
8
fatty acids
8
vlcfa plasma
8
adrenoleukodystrophy protein
8
molecular characterization
4

Similar Publications

Background: The use of exome sequencing (ES) has helped in detecting many variants and genes that cause primary adrenal insufficiency (PAI). The diagnosis of PAI is difficult and can be life-threatening if not treated urgently. Consanguinity can impact the detection of recessively inherited genes.

View Article and Find Full Text PDF

Whole exome sequencing reveals ABCD1 variant as a potential contributor to male infertility.

Mol Biol Rep

January 2025

Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca, Morocco.

Background: Male infertility (MI) is a polygenic condition mainly induced by spermatogenic failure/arrest or systemic disease with a large clinical spectrum. Lately, genetic sequencing allowed the identification of several variants implicated in both aforesaid situations.

Methods And Results: In this case study, we performed whole exome sequencing (WES) on the genomic DNA of a 37-year-old Moroccan man with Non-Obstructive Azoospermia.

View Article and Find Full Text PDF

Worldwide, thousands of male patients who carry ATP Binding Cassette Subfamily D Member 1 () mutations develop adrenomyeloneuropathy (AMN) in mid-adulthood, a debilitating axonopathy of the spinal cord. Today AAV gene therapy brings the most hope for this orphan disease. We previously reported that an AAV9-MAG- vector injected intravenously in the neonatal period prevented the disease in 2-year-old mice, the AMN mouse model.

View Article and Find Full Text PDF

Altered lipid profile and reduced neuronal support in human induced pluripotent stem cell-derived astrocytes from adrenoleukodystrophy patients.

J Inherit Metab Dis

January 2025

Department of Complex Trait Genetics, Centre for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.

X-linked adrenoleukodystrophy (ALD) is a peroxisomal disorder resulting from pathogenic variants in the ABCD1 gene that primarily affects the nervous system and is characterized by progressive axonal degeneration in the spinal cord and peripheral nerves and leukodystrophy. Dysfunction of peroxisomal very long-chain fatty acid (VLCFA) degradation has been implicated in ALD pathology, but the impact on astrocytes, which critically support neuronal function, remains poorly understood. Fibroblasts from four ALD patients were reprogrammed to generate human-induced pluripotent stem cells (hiPSC).

View Article and Find Full Text PDF

Introduction: is the most prevalent enteric protozoan parasite causing infectious diarrhea in neonatal calves worldwide with a direct negative impact on their health and welfare. This study utilized next-generation sequencing (NGS) to deepen our understanding of intestinal epithelial barriers and transport mechanisms in the pathophysiology of infectious diarrhea in neonatal calves, which could potentially unveil novel solutions for treatment.

Methods: At day 1 of life, male Holstein-Friesian calves were either orally infected (n = 5) or not (control group, n = 5) with oocysts (in-house strain LE-01-Cp-15).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!