Ion-channels: goals for function-oriented synthesis.

Acc Chem Res

Fachbereich Chemie, Philipps-Universität Marburg, Hans Meerwein Strasse, 35032 Marburg, Germany.

Published: December 2013

Ion channels provide a conductance pathway for the passive transport of ions across membranes. These functional molecules perform key tasks in biological systems such as neuronal signaling, muscular control, and sensing. Recently, function-oriented synthesis researchers began to focus on ion channels with the goal of modifying the function of existing ion channels (ion selectivity, gating) or creating new channels with novel functions. Both approaches, ion channel engineering and de novo design, have involved synthetic chemists, biochemists, structural biologists, and neurochemists. Researchers characterize the function of ion channels by measuring their conductance in samples of biological membranes (patch clamp) or artificial membranes (planar lipid bilayers). At the single molecule level, these measurements require special attention to the purity of the sample, a challenge that synthetic chemists should be aware of. Ideally, researchers study the function of channels while also acquiring structural data (X-ray, NMR) to understand and predict how synthetic modifications alter channel function. Long-term oriented researchers would like to apply synthetic ion channels to single molecule sensing and to implantat these synthetic systems in living organisms as tools or for the treatment of channelopathies. In this Account, we discuss our own work on synthetic ion channels and explain the shift of our research focus from a de novo design of oligo-THFs and oligo-THF-amino acids to ion channel engineering. We introduce details about two biological lead structures for ion channel engineering: the gramicidin β(6,3) helix as an example of a channel with a narrow ion conductance pathway and the outer membrane porins (OmpF, OmpG) with their open β-barrel structure. The increase and the reversal of ion selectivity of these systems and the hydrophobic match/mismatch of the channel with the phospholipid bilayer are of particular interest. For engineering ion channels, we need to supplement the single-point attachment of a synthetic modulator with the synthesis of a more challenging two-point attachment. The successful function-oriented synthesis of ion channels will require interdisciplinary efforts that include new electrophysiology techniques, efficient synthesis (peptide/protein/organic), and good structural analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ar400007wDOI Listing

Publication Analysis

Top Keywords

ion channels
32
ion
14
function-oriented synthesis
12
ion channel
12
channel engineering
12
channels
10
synthesis ion
8
conductance pathway
8
ion selectivity
8
novo design
8

Similar Publications

Instant and refrigerated acid soaking are commonly used in cocoon production to prevent or break diapause, and provide developable silkworm eggs for sericulture, while their mechanisms have not been fully understood. This study aims to investigate the mechanisms by which hydrochloric acid (HCl) or dimethyl sulfoxide (DMSO) promotes embryonic development in silkworm Bombyx mori, focusing on the chloride ion (Cl) related gene expression profiles. Our results revealed that the HCl treatment of up to 6 min enhanced hatchability in freshly picked and cold-stored eggs, whereas a slight decrease in hatchability was observed in those treated with DMSO for 40 min.

View Article and Find Full Text PDF

Rationale: Data are required for SIFT-MS analysis of perfluoroalkyl and polyfluoroalkyl substances (PFAS), which are persistent in the environment and cause adverse health effects. Specifically, the rate coefficients and product ion branching ratios of the reactions of HO, NO, O •, O•, OH, O •, NO and NO with PFAS vapours are needed.

Methods: The dual polarity SIFT-MS instrument (Voice200) was used to generate these eight reagent ions and inject them into the flow tube with N carrier gas at a temperature of 393 K.

View Article and Find Full Text PDF

Our study examined the relationships and interactions among 30 genes related to the NOD-like receptor protein 3 (NLRP3) inflammasome. We identified 368 interconnections between these 30 genes, with NLRP3 participating in 38 interactions. The potential roles of these genes in atherosclerosis were evaluated based on protein-protein interaction networks and coexpression analysis.

View Article and Find Full Text PDF

Adaptive remodeling of rat adrenomedullary stimulus-secretion coupling in a chronic hypertensive environment.

Cell Mol Life Sci

December 2024

Univ Angers, INSERM, CNRS, MITOVASC, Équipe CARME, SFR ICAT, F-49000 Angers, France.

Chronic elevated blood pressure impinges on the functioning of multiple organs and therefore harms body homeostasis. Elucidating the protective mechanisms whereby the organism copes with sustained or repetitive blood pressure rises is therefore a topical challenge. Here we address this issue in the adrenal medulla, the master neuroendocrine tissue involved in the secretion of catecholamines, influential hormones in blood pressure regulation.

View Article and Find Full Text PDF

Objectives: To explore the neuroprotective mechanism of electroacupuncture at the acupoints and in rats with cerebral ischemia-reperfusion (IR) injury.

Methods: Forty-eight male SD rats were equally randomized into sham operation group, cerebral IR model group, acupoint electroacupuncture group and non-acupoint acupuncture group. In the latter 3 groups, cerebral focal ischemic injury was induced using the Longa method; in the two electroacupuncture groups, electroacupuncture was performed either at the acupoints and or at non-acupoint sites for 7 days.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!