Objectives: The objective of this work was to develop a new strategy to physically 'repair' chemically damaged hair. Hence the human eye γD-crystallin, a protein from the superfamily characterized structurally by the Greek key motif, was studied. The human γD-crystallin was chosen based on the ability of proteins belonging to this superfamily to be involved in the coating of specific structures. Two crystallins were used on the study, the wild type (Protein Data Bank ID: 1HK0) and the mutant protein. The mutant form was intended to induce a strong and quick protein polymerization as well to have new possible points of anchorage to hair.
Methods: The ability of both crystallins to bind to damaged hair and even penetrate into its cortex was checked by fluorescence microscopy, confocal microscopy and scanning electron microscopy. Furthermore the reinforcement of hair mechanical resistance, the potential cytotoxic/inflammatory effect of crystallins were studied in order to have a fully comprehension about the protein based formulation.
Results: Although the chemical over-bleaching treatment induced a decrease of 20% on the resistance of the hair, the crystallins which bind and penetrate the hair fibre were able to recover and even to improve its mechanical properties when compared to the virgin hair. Moreover none of the crystallins displayed a toxic effect in fibroblasts for all the range of tested concentrations upon 72 h of exposure. The active aggregation process of mutant crystallin induced an inflammatory response in fibroblasts in the first 24 h of contact, measured by the amount of released pro-inflammatory cytokine IL-6 to the medium. In contrast contact with wild type crystallin did not lead to significant inflammation.
Conclusion: Outcome from protein formulation characterization supports the hypothesis that the γD-crystallin it is able to recover and improve the mechanical properties of chemical damaged hair. Therefore it can be considered as a very promising strengthening agent for the development of new restorative hair care products.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ics.12065 | DOI Listing |
Biomater Res
January 2025
Hospital of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China.
Low fracture toughness, low-temperature degradation (LTD) susceptibility, and inadequate soft tissue integration greatly limit the application of zirconia ceramic abutment. Integrating the "surface" of hard all-ceramic materials into the gingival soft tissue and simultaneously promoting the "inner" LTD resistance and fracture toughness is challenging. Composite ceramics are effective in improving the comprehensive properties of materials.
View Article and Find Full Text PDFF1000Res
January 2025
Department of Orthodontics and Dentofacial Orthopaedics, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karanataka, 576104, India.
Objectives: Good oral hygiene measures are important for successful orthodontic treatment. They involve various types of mouthwashes which have been reported to cause alteration of mechanical properties of archwires. This study aimed to evaluate the effects of a new kind of chlorine-dioxide-containing mouthwash on the mechanical properties and surface morphology of stainless steel orthodontic archwires against the already prevalent chlorhexidine mouthwash in the market.
View Article and Find Full Text PDFJ Tradit Complement Med
November 2024
Orthopedic Research Center, Shahid Kamyab Hospital, Mashhad University of Medical Sciences, Mashhad, Iran.
Background: Post-surgical tendon adhesion formation is a frequent clinical complication with limited treatment options. The aim of this study is to investigate safety and efficacy of orally administration of crocin in attenuating post-operative tendon-sheath adhesion bands in an Achilles tendon rat model.
Methods: Structural, mechanical, histological, and biochemical properties of Achilles tendons were analyzed in the presence and absence of crocin.
Heliyon
January 2025
Institute of Agro-products Processing, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230041, China.
This study investigates the enhancement of gelatin (GEL) films using hydroxypropyl methylcellulose (HPMC) and carboxymethyl cellulose (CMC) for edible film packaging applications. Although GEL is biocompatible and cost-effective, its limited mechanical strength presents significant challenges for practical applications. The findings indicate that CMC effectively increases tensile strength (TS), while HPMC improves elongation at break (EAB) and hydrophilicity.
View Article and Find Full Text PDFHeliyon
January 2025
Jiangxi Guangyuan Chemical Co. Ltd., Ji'an, Jiangxi, 331500, China.
A Silicon-containing Oligomeric Charring Agent (CNCSi-DA) containing triazine rings and silicon was designed, synthesized and characterized. CNCSi-DA was chosen as macromolecular coating agent to modify Ammonium Polyphosphate (APP) to be core-shell coating-mixture (APP@CNCSi-DA). The synergistic effects of APP@CNCSi-DA on hydrophobicity, mechanical and flame retardant properties, and mechanism of flame-retardant polypropylene (PP) were studied.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!