A precise definition for a quantum electron thermometer is given, as an electron reservoir coupled locally (e.g., by tunneling) to a sample, and brought into electrical and thermal equilibrium with it. A realistic model of a scanning thermal microscope with atomic resolution is then developed, including the effect of thermal coupling of the probe to the ambient environment. We show that the temperatures of individual atomic orbitals or bonds in a conjugated molecule with a temperature gradient across it exhibit quantum oscillations, whose origin can be traced to a realization of Maxwell's demon at the single-molecule level. These oscillations may be understood in terms of the rules of covalence describing bonding in π-electron systems. Fourier's law of heat conduction is recovered as the resolution of the temperature probe is reduced, indicating that the macroscopic law emerges as a consequence of coarse graining.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nn401027u | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!