The Mycobacterium tuberculosis genome contains an unusually high number of toxin-antitoxin modules, some of which have been suggested to play a role in the establishment and maintenance of latent tuberculosis. Nine of these toxin-antitoxin loci belong to the mazEF family, encoding the intracellular toxin MazF and its antitoxin inhibitor MazE. Nearly every MazF ortholog recognizes a unique three- or five-base RNA sequence and cleaves mRNA. As a result, these toxins selectively target a subset of the transcriptome for degradation and are known as "mRNA interferases." Here we demonstrate that a MazF family member from M. tuberculosis, MazF-mt6, has an additional role--inhibiting translation through targeted cleavage of 23S rRNA in the evolutionarily conserved helix/loop 70. We first determined that MazF-mt6 cleaves mRNA at (5')UU↓CCU(3') sequences. We then discovered that MazF-mt6 also cleaves M. tuberculosis 23S rRNA at a single UUCCU in the ribosomal A site that contacts tRNA and ribosome recycling factor. To gain further mechanistic insight, we demonstrated that MazF-mt6-mediated cleavage of rRNA can inhibit protein synthesis in the absence of mRNA cleavage. Finally, consistent with the position of 23S rRNA cleavage, MazF-mt6 destabilized 50S-30S ribosomal subunit association. Collectively, these results show that MazF toxins do not universally act as mRNA interferases, because MazF-mt6 inhibits protein synthesis by cleaving 23S rRNA in the ribosome active center.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3666664PMC
http://dx.doi.org/10.1073/pnas.1222031110DOI Listing

Publication Analysis

Top Keywords

23s rrna
20
mazf-mt6 inhibits
8
cleavage 23s
8
ribosomal site
8
cleaves mrna
8
mazf-mt6 cleaves
8
protein synthesis
8
mazf-mt6
6
rrna
6
cleavage
5

Similar Publications

The proline-rich antimicrobial designer peptide Api137 inhibits protein expression in bacteria by binding simultaneously to the ribosomal polypeptide exit tunnel and the release factor (RF), depleting the cellular RF pool and leading to ribosomal arrest at stop codons. This study investigates the additional effect of Api137 on the assembly of ribosomes using an Escherichia coli reporter strain expressing one ribosomal protein per 30S and 50S subunit tagged with mCherry and EGFP, respectively. Separation of cellular extracts derived from cells exposed to Api137 in a sucrose gradient reveals elevated levels of partially assembled and not fully matured precursors of the 50S subunit (pre-50S).

View Article and Find Full Text PDF

Unlabelled: The complex (MAC) is a common causative agent causing nontuberculous mycobacterial (NTM) pulmonary disease worldwide. Whole-genome sequencing was performed on a total of 203 retrospective MAC isolates from respiratory specimens. Phylogenomic analysis identified eight subspecies and species.

View Article and Find Full Text PDF

Four novel nontuberculous mycobacteria were discovered from a historical strain collection at the International Reference Laboratory of Mycobacteriology at Statens Serum Institut in Copenhagen, Denmark. Phylogenetic analysis combining the 16S , internal transcribed spacer and 23S elements, as well as a single-copy core-gene (, , and ) analysis of these freeze-dried mycobacteria, clinically isolated from gastric lavage samples between 1948 and 1955, showed to be associated with type strains grouping within the Terra and Fortuitum-Vaccae clade. Phenotypic characteristics, biochemical properties and fatty acid and mycolic acid profiles supported the classification as novel strains.

View Article and Find Full Text PDF

, an important cause of enzootic pneumonia in pigs in many countries, has recently been shown to exhibit reduced susceptibility to several antimicrobial classes. In the present study, a total of 185 pig lung tissue samples were collected from abattoirs in Australia, from which 21 isolates of were obtained. The antimicrobial resistance profile of the isolates was determined for 12 antimicrobials using minimum inhibitory concentration (MIC) testing, and a subset ( = 14) underwent whole-genome sequence analysis.

View Article and Find Full Text PDF

A sexually transmitted bacterium, Mycoplasma genitalium has varying rates of reported resistance to macrolide and some fluoroquinolone group antimicrobials recommended for the treatment of its infections. It is currently recommended that the treatment of these must be planned according to macrolide resistance status. The aim of this study was to determine the presence of macrolide resistance associated mutations (MRM) and fluoroquinolone resistance associated mutations (QRM) in patients infected with M.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!