A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Arachidonic acid closes innexin/pannexin channels and thereby inhibits microglia cell movement to a nerve injury. | LitMetric

Pannexons are membrane channels formed by pannexins and are permeable to ATP. They have been implicated in various physiological and pathophysiological processes. Innexins, the invertebrate homologues of the pannexins, form innexons. Nerve injury induces calcium waves in glial cells, releasing ATP through glial pannexon/innexon channels. The ATP then activates microglia. More slowly, injury releases arachidonic acid (ArA). The present experiments show that ArA itself reduced the macroscopic membrane currents of innexin- and of pannexin-injected oocytes; ArA also blocked K(+) -induced release of ATP. In leeches, whose large glial cells have been favorable for studying control of microglia migration, ArA blocked glial dye-release and, evidently, ATP-release. A physiological consequence in the leech was block of microglial migration to nerve injuries. Exogenous ATP (100 µM) reversed the effect, for ATP causes activation and movement of microglia after nerve injury, but nitric oxide directs microglia to the lesion. It was not excluded that metabolites of ArA may also inhibit the channels. But for all these effects, ArA and its non-metabolizable analog eicosatetraynoic acid (ETYA) were indistinguishable. Therefore, ArA itself is an endogenous regulator of pannexons and innexons. ArA thus blocks release of ATP from glia after nerve injury and thereby, at least in leeches, stops microglia at lesions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3710304PMC
http://dx.doi.org/10.1002/dneu.22088DOI Listing

Publication Analysis

Top Keywords

nerve injury
16
arachidonic acid
8
glial cells
8
ara
8
ara blocked
8
release atp
8
atp
7
microglia
6
nerve
5
injury
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!