Steroidogenic factor 1 (SF-1) is a master regulator for steroidogenesis. In this study, we identified novel SF-1 target genes using a genome-wide promoter tiling array and a DNA microarray. SF-1 was found to regulate human glutathione S-transferase A (GSTA) family genes (hGSTA1-hGSTA4), a superfamily of detoxification enzymes clustered on chromosome 6p12. All hGSTA genes were up-regulated by transduction of SF-1 into human mesenchymal stem cells, while knockdown of endogenous SF-1 in H295R cells down-regulated all hGSTA genes. Chromatin immunoprecipitation assays, however, revealed that SF-1 bound directly to the promoters of hGSTA3 and weakly of hGSTA4. Chromosome conformation capture assays revealed that the coordinated expression of the genes was based on changes in higher-order chromatin structure triggered by SF-1, which enables the formation of long-range interactions, at least between hGSTA1 and hGSTA3 gene promoters. In steroidogenesis, dehydrogenation of the 3-hydroxy group and subsequent Δ(5)-Δ(4) isomerization are thought to be enzymatic properties of 3β-hydroxysteroid dehydrogenase (3β-HSD). Here, we demonstrated that, in steroidogenic cells, the hGSTA1 and hGSTA3 gene products catalyze Δ(5)-Δ(4) isomerization in a coordinated fashion with 3β-HSD II to produce progesterone or Δ(4)-androstenedione from their Δ(5)-precursors. Thus, hGSTA1 and hGSTA3 gene products are new members of steroidogenesis working as Δ(5)-Δ(4) isomerases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1096/fj.12-222745 | DOI Listing |
FASEB J
August 2013
Department of Biochemistry, Faculty of Medical Sciences, University of Fukui, Shimoaizuki, Matsuoka, Eiheiji, Fukui 910-1193, Japan.
Steroidogenic factor 1 (SF-1) is a master regulator for steroidogenesis. In this study, we identified novel SF-1 target genes using a genome-wide promoter tiling array and a DNA microarray. SF-1 was found to regulate human glutathione S-transferase A (GSTA) family genes (hGSTA1-hGSTA4), a superfamily of detoxification enzymes clustered on chromosome 6p12.
View Article and Find Full Text PDFMethods Enzymol
February 2006
Division of Pharmacogenomics and Molecular Epidemiology, National Center for Toxicological Research, Jefferson, Arkansas, USA.
The human alpha class glutathione S-transferases (GSTs) consist of 5 genes, hGSTA1-hGSTA5, and 7 pseudogenes on chromosome 6p12.1-6p12.2.
View Article and Find Full Text PDFBiochemistry
December 2004
Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, Maryland 21702, USA.
The crystal structure of human class alpha glutathione (GSH) S-transferase A3-3 (hGSTA3-3) in complex with GSH was determined at 2.4 A. Despite considerable amino acid sequence identity with other human class alpha GSTs (e.
View Article and Find Full Text PDFPharmacogenetics
June 2002
INSERM U456, Université de Rennes I, 2 Avenue du Professeur Léon Bernard, 35043 Rennes, France.
By searching the human genome sequence database with human hGSTA1 and hGSTA4 cDNA sequences, we identified three PAC and one BAC clones covering more than 400 kilobases and containing the entire GST alpha gene cluster. The cluster consists of five genes: hGSTA1, hGSTA2, hGSTA3, hGSTA4 and hGSTA5, and seven pseudogenes that are distinguished as such by single-base and/or complete exon deletions. Using gene-specific probes we demonstrated that hGSTA1, hGSTA2 and hGSTA4 mRNAs are widely expressed in human tissues, whereas hGSTA3 mRNA appears to be a rare message subject to splicing defects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!