PathOpt--a global transition state search approach: outline of algorithm.

J Comput Chem

Institut für Physikalische und Theoretische Chemie, Fakultät für Chemie und Pharmazie, Julius-Maximilians-Universität Würzburg, Emil-Fischer-Straße 42, Würzburg, D-97074, Germany.

Published: August 2013

We propose a new algorithm to determine reaction paths and test its capability for Ar12 and Ar13 clusters. Its main ingredient is a search for the local minima on a (n-1) dimensional hyperplane (n = dimension of the complete system in Cartesian coordinates) lying perpendicular to the straight line connection between initial and final states. These minima are part of possible reaction paths and are, hence, used as starting points for an uphill search to the next transition state. First, path fragments are obtained from subsequent relaxations starting from these transition states. They can be combined with information from the straight line connection procedure to obtain complete paths. Our test computations for Ar12 and Ar13 clusters prove that PathOpt delivers several reaction paths in one round.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcc.23307DOI Listing

Publication Analysis

Top Keywords

reaction paths
12
transition state
8
paths test
8
ar12 ar13
8
ar13 clusters
8
straight connection
8
pathopt--a global
4
global transition
4
state search
4
search approach
4

Similar Publications

The photoinduced reaction of [Pt(NO)] with pyridine or its derivatives (L) was found to result in the formation of [PtL](NO) salts in high yield. This transformation was successfully probed for methyl- and carboxyethyl-substituted pyridines, and the corresponding [PtL](NO) salts were isolated and fully characterized using single-crystal X-ray diffraction (SCXRD). Anation of the [Pt(py)] cationic complex with N was studied by H NMR spectroscopy in aqueous and water/dimethyl sulfoxide solutions of [Pt(py)](NO).

View Article and Find Full Text PDF

The Ph3P-I2-mediated reactions between isatins and amines were extensively investigated leading to the discovery of highly selective and divergent routes toward the synthesis of two distinct classes of indole-based frameworks. Through a strategic design of the reaction paths, we overcome potential side reactions to achieve convenient and straightforward one-pot methods to access either indoloquinazolines with C-12 carboxamide or 2-aminosubstituted indol-3-ones using the same reagent system. Mechanistic studies reveal the role of Ph3P-I2 in governing product selectivity, providing an efficient route to novel fused-indolone derivatives with promising applications in drug discovery and medicinal chemistry.

View Article and Find Full Text PDF

Developing efficient strategies for the deoxygenative functionalization of carbonyl compounds is crucial for enhancing the effective utilization of biomass and the upgrading of chemical feedstocks. In this study, we present an elegant cathodic reduction strategy that enables a tandem alkylation/dearomatization reaction between quinoline derivatives and aryl aldehydes/ketones in a one-pot process. Our approach can be executed via two distinct paths: the aluminum (Al)-facilitated spin-center shift (SCS) path and the Al-facilitated direct deoxygenation path.

View Article and Find Full Text PDF

Since the field of autonomous vehicles is developing quickly, it is becoming increasingly crucial for them to safely and effectively navigate their surroundings to avoid collisions. The primary collision avoidance algorithms currently employed by self-driving cars are examined in this thorough survey. It looks into several methods, such as sensor-based methods for precise obstacle identification, sophisticated path-planning algorithms that guarantee cars follow dependable and safe paths, and decision-making systems that allow for adaptable reactions to a range of driving situations.

View Article and Find Full Text PDF

Light-driven biotransformations in recombinant cyanobacteria benefit from the atom-efficient regeneration of reaction equivalents like NADPH from water and light by oxygenic photosynthesis. The self-shading of photosynthetic cells throughout the reaction volume, along with the need for extended light paths, limits adequate light supply and significantly restricts the potential for upscaling. Here, we present a flat panel photobioreactor (1 cm optical path length) as a scalable system to provide efficient illumination at high cell densities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!