A striking universality in the electric-field-driven resistive switching is shown in three prototypical narrow-gap Mott systems. This model, based on key theoretical features of the Mott phenomenon, reproduces the general behavior of this resistive switching and demonstrates that it can be associated with a dynamically directed avalanche. This model predicts non-trivial accumulation and relaxation times that are verified experimentally.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.201301113DOI Listing

Publication Analysis

Top Keywords

electric-field-driven resistive
8
narrow-gap mott
8
resistive switching
8
universal electric-field-driven
4
resistive transition
4
transition narrow-gap
4
mott insulators
4
insulators striking
4
striking universality
4
universality electric-field-driven
4

Similar Publications

Tunnel junctions comprising self-assembled monolayers (SAMs) from liquid crystal-inspired molecules show a pronounced hysteretic current-voltage response, due to electric field-driven dipole reorientation in the SAM. This renders these junctions attractive device candidates for emerging technologies such as in-memory and neuromorphic computing. Here, the novel molecular design, device fabrication, and characterization of such resistive switching devices with a largely improved performance, compared to the previously published work are reported.

View Article and Find Full Text PDF

High dielectric transparent polymer composite with well-organized carboxymethyl cellulose microfibers in silicon elastomer fabricated under direct current electric field.

Carbohydr Polym

April 2024

Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University, Wuhan 430056, China; Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, Qingdao University of Science & Technology, Qingdao 266042, China. Electronic address:

The combination of transparency, high dielectric permittivity, biocompatibility and flexibility is highly desired in the embedded capacitors. Herein, we show that assembling biodegradable sodium carboxymethyl cellulose (CMC) microfibers in biocompatible silicon elastomer (PDMS) under direct current (DC) electric field enables the production of high dielectric constant composite film with above desired properties. This process leads to the formation of columns of CMC microfibers spanning across the thickness direction, thus generating microfiber depleted regions in between fibers and polymer matrix.

View Article and Find Full Text PDF

Electric-Field Control of Perpendicularly Magnetized Ferrimagnetic Order and Giant Magnetoresistance in Multiferroic Heterostructures.

Nano Lett

January 2024

State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.

Electrical control of magnetism is highly desirable for energy-efficient spintronic applications. Realizing electric-field-driven perpendicular magnetization switching has been a long-standing goal, which, however, remains a major challenge. Here, electric-field control of perpendicularly magnetized ferrimagnetic order via strain-mediated magnetoelectric coupling is reported.

View Article and Find Full Text PDF

Layered thio- and seleno-phosphate ferroelectrics, such as CuInPS, are promising building blocks for next-generation nonvolatile memory devices. However, because of the low Curie point, the CuInPS-based memory devices suffer from poor thermal stability (<42 °C). Here, exploiting the electric field-driven phase transition in the rarely studied antiferroelectric CuCrPS crystals, we develop a nonvolatile memristor showing a sizable resistive-switching ratio of ~ 1000, high switching endurance up to 20,000 cycles, low cycle-to-cycle variation, and robust thermal stability up to 120 °C.

View Article and Find Full Text PDF

Non-volatile memory devices using organic materials have attracted much attention due to their excellent scalability, fast switching speed, low power consumption, low cost Here, we report both volatile as well as non-volatile resistive switching behavior of -di[3,3'-bis(2-methylindolyl)methane]benzene (Indole2) and its mixture with stearic acid (SA). Previously, we have reported the bipolar resistive switching (BRS) behavior using 1,4-bis(di(1-indol-3-yl)methyl)benzene (Indole1) molecules under ambient conditions [Langmuir 37 (2021) 4449-4459] and complementary resistive switching (CRS) behavior when the device was exposed to 353 K or higher temperature [Langmuir 38 (2022) 9229-9238]. However, the present study revealed that when the H of -NH group of Indole1 is replaced by -CH, the resultant Indole2 molecule-based device showed volatile threshold switching behaviour.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!