Adult peripheral blood contains a limited number of endothelial progenitor cells that can be isolated for treatment of ischemic diseases. The adipose tissue became an interesting source of stem cells for regenerative medicine. This study aimed to investigate the phenotype of cells obtained by culturing adipose-derived mesenchymal stem cells (ad-MSCs) in the presence of endothelial growth supplements compared to endothelial cells obtained from umbilical cord blood (UCB). Passage 3 ad-MSCs and mononuclear layer from UCB were cultured in presence of endothelial growth media for 3 weeks followed by their characterization by flow cytometry and polymerase chain reaction. After culture in endothelial inductive media, ad-MSCs expressed endothelial genes and some endothelial marker proteins as CD31 and CD34, respectively. Adipose tissue could be a reliable source for easy obtaining, expanding and differentiating MSCs into endothelial-like cells for autologous cell-based therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10238-013-0238-5DOI Listing

Publication Analysis

Top Keywords

stem cells
12
cells
9
endothelial-like cells
8
mesenchymal stem
8
cells umbilical
8
umbilical cord
8
endothelial
8
endothelial cells
8
adipose tissue
8
presence endothelial
8

Similar Publications

Various mature tissue-resident cells exhibit progenitor characteristics following injury. However, the existence of endogenous stem cells with multiple lineage potentials in the adult spinal cord remains a compelling area of research. In this study, we present a cross-species investigation that extends from development to injury.

View Article and Find Full Text PDF

Artificially induced haploidy is lethal in vertebrates, although it is useful for genetic screening and genome editing due to its single set of genomes. Haploid embryonic stem (ES) cell lines in mammals contribute to genetic studies and the production of gametes derived from haploid ES cells. In fish breeding, doubled haploids (DHs) induced by artificially induced gynogenesis are used to generate isogenic gametes for cloning purposes.

View Article and Find Full Text PDF

Engineering the Ratios of Nanoparticles Dispersed in Triphasic Nanocomposites for Biomedical Applications.

ACS Appl Mater Interfaces

January 2025

Department of Bioengineering, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States.

Polymer/ceramic nanocomposites integrated the advantages of both polymers and ceramics for a wide range of biomedical applications, such as bone tissue repair. Here, we reported triphasic poly(lactic--glycolic acid) (PLGA, LA/GA = 90:10) nanocomposites with improved dispersion of hydroxyapatite (HA) and magnesium oxide (MgO) nanoparticles using a process that integrated the benefits of ultrasonic energy and dual asymmetric centrifugal mixing. We characterized the microstructure and composition of the nanocomposites and evaluated the effects of the HA/MgO ratios on degradation behavior and cell-material interactions.

View Article and Find Full Text PDF

Osteoporosis, affecting the entire skeletal system, can cause bone mass to diminish, thereby reducing bone strength and elevating fracture risk. Fracture nonunion and bone defects are common in patients with fractures, and pain and loss of function may cause serious distress. The search for a new therapeutic strategy is essential because of the limited therapeutic options available.

View Article and Find Full Text PDF

Regenerative Potential of Neural Stem/Progenitor Cells for Bone Repair.

Tissue Eng Part B Rev

January 2025

Research Unit in Mineralized Tissue Reconstruction and Faculty of Dentistry, Thammasat University, Pathum Thani, Thailand.

The increasing number of elderly people across the globe has led to a rise in osteoporosis and bone fractures, significantly impacting the quality of life and posing substantial health and economic burdens. Despite the development of tissue-engineered bone constructs and stem cell-based therapies to address these challenges, their efficacy is compromised by inadequate vascularization and innervation during bone repair. Innervation plays a pivotal role in tissue regeneration, including bone repair, and various techniques have been developed to fabricate innervated bone scaffolds for clinical use.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!