Cellular senescence irreversibly arrests proliferation in response to potentially oncogenic stress. Senescent cells also secrete inflammatory cytokines such as IL-6, which promote age-associated inflammation and pathology. HMGB1 (high mobility group box 1) modulates gene expression in the nucleus, but certain immune cells secrete HMGB1 as an extracellular Alarmin to signal tissue damage. We show that nuclear HMGB1 relocalized to the extracellular milieu in senescent human and mouse cells in culture and in vivo. In contrast to cytokine secretion, HMGB1 redistribution required the p53 tumor suppressor, but not its activator ATM. Moreover, altered HMGB1 expression induced a p53-dependent senescent growth arrest. Senescent fibroblasts secreted oxidized HMGB1, which stimulated cytokine secretion through TLR-4 signaling. HMGB1 depletion, HMGB1 blocking antibody, or TLR-4 inhibition attenuated senescence-associated IL-6 secretion, and exogenous HMGB1 stimulated NF-κB activity and restored IL-6 secretion to HMGB1-depleted cells. Our findings identify senescence as a novel biological setting in which HMGB1 functions and link HMGB1 redistribution to p53 activity and senescence-associated inflammation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3653366PMC
http://dx.doi.org/10.1083/jcb.201206006DOI Listing

Publication Analysis

Top Keywords

hmgb1
12
cells secrete
8
cytokine secretion
8
hmgb1 redistribution
8
hmgb1 stimulated
8
il-6 secretion
8
senescent
5
p53-dependent release
4
release alarmin
4
alarmin hmgb1
4

Similar Publications

Background: Chronic rhinosinusitis (CRS) is a global health issue, with some patients experiencing anxiety and depression-like symptoms. This study investigates the role of HMGB1 in anxiety and depression-like behaviors associated with the microglial Notch1/Hes-1 pathway in CRS mice.

Methods: A CRS mouse model was developed, and behavioral assessments were conducted to evaluate anxiety and depression-like behaviors.

View Article and Find Full Text PDF

HMGB1 induces unexplained recurrent spontaneous abortion by mediating decidual macrophage autophagy.

Int Immunopharmacol

January 2025

Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No 81 Meishan Road, Hefei 230032, Anhui, China; Innovation Research Institute of Engineering Medicine and Medical Equipment, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei 230032, Anhui, China. Electronic address:

Background: The overexpression of HMGB1 at the maternal-fetal interface (MFI) is recognized as a significant factor in Unexplained Recurrent Spontaneous Abortion (URSA). This study aimed to investigate autophagy in the decidual tissues of URSA patients and to explore the relationship between HMGB1 and macrophage autophagy at the MFI in URSA.

Methods: Human decidual tissues were collected from 40 patients diagnosed with URSA and from 60 women undergoing active termination of pregnancy.

View Article and Find Full Text PDF

CD4+ T helper 2 cell-macrophage crosstalk induces IL-24-mediated breast cancer suppression.

JCI Insight

January 2025

Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Krantz Family Center for Cancer Research, Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.

CD4+ T cells contribute to antitumor immunity and are implicated in the efficacy of cancer immunotherapies. In particular, CD4+ T helper 2 (Th2) cells were recently found to block spontaneous breast carcinogenesis. However, the antitumor potential of Th2 cells in targeting established breast cancer remains uncertain.

View Article and Find Full Text PDF

Currently, diabetic nephropathy (DN) stands as the predominant global cause of endstage renal disease. Many scientists believe that diabetes will eventually spread to pandemic levels due to the rising prevalence of the disease. While the primary factor leading to diabetic nephropathy is vascular dysfunction induced by hyperglycemia, several other pathological elements, such as fibrosis, inflammation, and oxidative stress, also contribute to the progression of the disease.

View Article and Find Full Text PDF

Metastatic cancer is still one of the leading causes of death worldwide despite significant advancements in diagnosis and treatment. Biomarkers are one of the most promising diagnostic tools that are used alongside traditional diagnostic tools in cancer patients. DAMPs are intracellular molecules released in response to cellular stress, tissue injury, and cell death.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!