The hydrolyzing properties of plasma esterases for aspirin were investigated in human plasma and plasma from experimental animals. The observed rates of aspirin hydrolysis were in the following order: rabbit > human > monkey > rat > mouse > dog > minipig. In human, monkey, and dog plasma, aspirin was hydrolyzed by their major hydrolases, paraoxonase (PON), butyrylcholinesterase (BChE), and albumin. In rabbit, mouse, and rat plasma, carboxylesterase (CES) was determined to be the enzyme responsible for aspirin hydrolysis, and in mouse and rat plasma, especially the latter, hydrolase activity was increased by the addition of ethopropazine, a specific inhibitor of BChE. Interestingly, divalent cations affected the plasma activity by enhancing or inhibiting the hydrolase activity of plasma BChE. The addition of 2 mM calcium increased the hydrolysis of aspirin in human, monkey, and dog plasma by 2.7-, 1.9-, and 2.3-fold, respectively. Magnesium showed a similar but lesser effect. Increasing concentrations of calcium and magnesium resulted in a two-phase stimulatory effect on aspirin hydrolysis in human plasma. In contrast, the addition of zinc had an inhibitory effect on plasma BChE activity. It is postulated that calcium and magnesium bind to BChE and thereby change the conformation of the enzyme to a more appropriate position for aspirin hydrolysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1124/dmd.113.051805 | DOI Listing |
Front Immunol
December 2024
The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, China.
CD73, an important metabolic and immune escape-promoting gene, catalyzes the hydrolysis of adenosine monophosphate (AMP) to adenosine (ADO). AMP has anti-inflammatory and vascular relaxant properties, while ADO has a strong immunosuppressive effect, suggesting that CD73 has pro-inflammatory and immune escape effects. However, CD73 also decreased proinflammatory reaction, suggesting that CD73 has a positive side to the body.
View Article and Find Full Text PDFJ Pharm Biomed Anal
April 2024
Laboratory of Pharmaceutical Technology, School of Pharmacy and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama-shi, Toyama 930-0194, Japan.
This study investigated a crucial surface property of silica that contributes to the chemical stability of acetylsalicylic acid (ASA) physically adsorbed on silica. Hydrophilic nonmesoporous types of silica were selected, and the number of hydroxyl groups on silica (N) was evaluated using thermogravimetric analysis (TGA). The ASA-containing silica was stored at 40 °C in drying conditions, and the amount of ASA degradation was quantified based on salicylic acid.
View Article and Find Full Text PDFAsian J Pharm Sci
January 2023
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing 100190, China.
To reduce mucosal damage in the gastrointestinal tract caused by aspirin, we developed a dissolvable polymeric microneedle (MN) patch loaded with aspirin. Biodegradable polymers provide mechanical strength to the MNs. The MN tips punctured the cuticle of the skin and dissolved when in contact with the subcutaneous tissue.
View Article and Find Full Text PDFBiomed Chromatogr
April 2023
Department of Chemistry, School of Science, GITAM Deemed to Be University, Hyderabad, India.
Analytical techniques must be sensitive, specific, and accurate to assess the active pharmaceutical ingredients in pharmaceutical dosage forms. The quality-by-design (QbD) application has proven to be a practical method for magnifying HPLC operations. This article discusses the successfully developed QbD-based stability-indicative LC method for evaluating acetaminophen, caffeine, and aspirin (ASP) in tablet dosage form.
View Article and Find Full Text PDFNeurochem Int
October 2021
Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC, USA; Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA; Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA; Department of Drug Discovery, Medical University of South Carolina, Charleston, SC, USA. Electronic address:
Aspirin is a desired leaving group in prodrugs aimed at treatment of neurodegeneration and other conditions. A library of aspirin derivatives of various scaffolds potentially activating Nrf2 has been tested in Neh2-luc reporter assay which screens for direct Nrf2 protein stabilizers working via disruption of Nrf2-Keap1 interaction. Most aspirin prodrugs had a pro-alkylating or pro-oxidant motif in the structure and, therefore, were toxic at high concentrations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!