The aim of the present study was to assess, by light microscopy and histomorphometry, the repair of surgical fractures fixed with internal rigid fixation (IRF) treated or not with IR laser (λ780 nm, 50 mW, 4 × 4 J/cm(2) = 16 J/cm(2), ϕ = 0.5 cm(2), CW) associated or not to the use of hydroxyapatite and guided bone regeneration. Surgical tibial fractures were created under general anesthesia on 15 rabbits that were divided into 5 groups, maintained on individual cages, at day/night cycle, fed with solid laboratory pelted diet, and had water ad libidum. The fractures in groups II, III, IV, and V were fixed with miniplates. Animals in groups III and V were grafted with hydroxyapatite and GBR technique used. Animals in groups IV and V were irradiated at every other day during two weeks (4 × 4 J/cm(2), 16 J/cm(2) = 112 J/cm(2)). Observation time was that of 30 days. After animal death, specimens were taken, routinely processed to wax, cut and stained with HA and Sirius red, and used for histological assessment. The results of both analyses showed a better bone repair on all irradiated subjects especially when the biomaterial and GBR were used. In conclusion, the results of the present investigation are important clinically as they are suggestive that the association of hydroxyapatite, and laser light resulted in a positive and significant repair of complete tibial fractures treated with miniplates.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10103-013-1339-9DOI Listing

Publication Analysis

Top Keywords

guided bone
8
bone regeneration
8
regeneration surgical
8
surgical fractures
8
fractures treated
8
treated miniplates
8
j/cm2 j/cm2
8
tibial fractures
8
groups iii
8
animals groups
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!