In this study, we synthesized some novel N-(tetrazol-1H-5-yl)-6,14-endoethenotetrahydrothebaine 7α-substituted 1,3,4-oxadiazole and 1,3,4-thiadiazole derivatives as potential analgesic agents. The structures of the compounds were established on the basis of their IR, ¹H NMR, ¹³C NMR, 2D NMR, and high-resolution mass spectral data. The analgesic activity was evaluated by a rat-hot plate test model and a rat tail-flick model. Compound 12 showed analgesic activity higher than that of morphine. In addition to a histopathological and biochemical evaluation, the LD₅₀ dose for the most active compound 12 was determined.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ardp.201200451 | DOI Listing |
Expert Opin Ther Pat
August 2018
a Institute of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University, Jinan , PR China.
There are great potential in the development of selective HDAC6 inhibitors for the treatment of infectious diseases, neoplasms, endocrine diseases, and other diseases associated with HDAC6 activity. Areas covered: The application claims 1,3,4-oxadiazole sulfamide derivatives as selective HDAC6 inhibitors for the treatment of infectious diseases, neoplasms, endocrine, nutritional, and metabolic diseases; mental and behavioral disorders; neurological diseases; diseases of the eye and adnexa; cardiovascular diseases; respiratory diseases; digestive diseases; diseases of the skin and subcutaneous tissue; disease of the musculoskeletal system and connective tissue; or congenital malformations, deformations and chromosomal abnormalities. Many of the exemplified compounds showed nanomole potency against HDAC6 and were more than 5000-fold selectivity for HDAC6 over HDAC1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!