As buildings become increasingly complex, construction monitoring using various sensors is urgently needed for both more systematic and accurate safety management and high-quality productivity in construction. In this study, a monitoring system that is composed of a laser displacement sensor (LDS) and a wireless sensor node was proposed and applied to an irregular building under construction. The subject building consists of large cross-sectional members, such as mega-columns, mega-trusses, and edge truss, which secured the large spaces. The mega-trusses and edge truss that support this large space are of the cantilever type. The vertical displacement occurring at the free end of these members was directly measured using an LDS. To validate the accuracy and reliability of the deflection data measured from the LDS, a total station was also employed as a sensor for comparison with the LDS. In addition, the numerical simulation result was compared with the deflection obtained from the LDS and total station. Based on these investigations, the proposed wireless displacement monitoring system was able to improve the construction quality by monitoring the real-time behavior of the structure, and the applicability of the proposed system to buildings under construction for the evaluation of structural safety was confirmed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3690030 | PMC |
http://dx.doi.org/10.3390/s130505796 | DOI Listing |
Aesthet Surg J
January 2025
Department of Dermatology, Erasmus Universiteit Rotterdam, Rotterdam, Netherlands.
Background: Midfacial aging involves skeletal changes, muscle weakening, and fat redistribution, resulting in volume loss, skin sagging, and deepened nasolabial folds. High-Intensity Facial Electrical Stimulation (HIFES) combined with Radiofrequency (RF) is a novel non-invasive method to address these changes by enhancing muscle mass and remodeling subcutaneous tissue.
Objectives: To assess the efficacy of HIFES and Synchronized RF in improving midfacial aesthetics, specifically muscle thickness, skin displacement, and facial volume.
Resource partitioning is crucial for the coexistence of colonial herons, as it allows multiple species to share the same habitat while minimising competition. This study took advantage of a natural experiment in 2006 and 2007 when Black-crowned Night Herons were prevented from breeding at Lake Fetzara in the first year due to the presence of a feral cat. This event provided valuable insight into the spatial and temporal dynamics of nest site selection among coexisting heron species, which consisted of Cattle Egrets (), Little Egrets () and Squacco Herons ().
View Article and Find Full Text PDFSci Rep
January 2025
School of Energy and Mining Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China.
For a long time, the management of surface structures such as villages and rivers affected by underground coal mining has been a popular and difficult issue in coal mining. With the further tightening of environmental protection requirements, it has become challenging for some underground coal mines that lack the conditions for filling and grouting to ensure the recovery of coal resources while controlling surface subsidence. Furthermore, many such common issues have emerged in the Yushen and Binchang mining areas of Shanxi Province, as well as in several other coalfields, severely constraining the development of coal energy and ecological environmental protection.
View Article and Find Full Text PDFJ Oral Maxillofac Surg
December 2024
Department Head, Department of Orthopaedic Surgery, Xingtai People's Hospital, Xingtai, Hebei, China.
Purpose: Zygomaticomaxillary complex (ZMC) fractures are a prevalent form of craniofacial trauma. However, no universally accepted fixation method has been established to prevent postreduction displacement in ZMC fractures.
Methods: Computerized and additional manual searches of the Medline, Embase, Chinese National Knowledge Infrastructure, and Cochrane Central database for potential studies, published from inception to May 2024, were performed.
Data Brief
December 2024
Tampere University, Faculty of Built Environment, P.O. Box 600, FI-33014 Tampere, Finland.
In a slim-floor structural system, beams and slabs are placed at the same level, reducing the overall floor height and material usage in vertical structures, thereby improving economic efficiency. The use of slim-floor structures is common practice in Finnish construction where these structures are typically constructed using hollow-concrete slabs and welded steel box beams. However, in Finland, only a few buildings utilise cross-laminated timber (CLT) slabs in slim-floor structures, and none have incorporated the composite action between CLT and steel beams.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!