Integration of voltage-gated Ca(2+) channels in a network of protein-interactions is a crucial requirement for proper regulation of channel activity. In this study, we took advantage of the specific properties of the yeast split-ubiquitin system to search for and characterize so far unknown interaction partners of CaV2 Ca(2+) channels. We identified tetraspanin-13 (TSPAN-13) as an interaction partner of the α1 subunit of N-type CaV2.2, but not of P/Q-type CaV2.1 or L- and T-type Ca(2+) channels. Interaction could be located between domain IV of CaV2.2 and transmembrane segments S1 and S2 of TSPAN-13. Electrophysiological analysis revealed that TSPAN-13 specifically modulates the efficiency of coupling between voltage sensor activation and pore opening of the channel and accelerates the voltage-dependent activation and inactivation of the Ba(2+) current through CaV2.2. These data indicate that TSPAN-13 might regulate CaV2.2 Ca(2+) channel activity in defined synaptic membrane compartments and thereby influences transmitter release.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3646272PMC
http://dx.doi.org/10.1038/srep01777DOI Listing

Publication Analysis

Top Keywords

ca2+ channels
16
cav22 ca2+
8
channel activity
8
cav22
5
ca2+
5
tetraspanin-13 modulates
4
modulates voltage-gated
4
voltage-gated cav22
4
channels
4
channels integration
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!