Toxic effects of pure anatoxin-a on biomarkers of rainbow trout, Oncorhynchus mykiss.

Toxicon

Interdisciplinary Centre of Marine and Environmental Research-CIIMAR/CIMAR, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal.

Published: August 2013

Anatoxin-a is a neurotoxin produced by various bloom-forming cyanobacteria. Although it shows widespread occurrence and is highly toxic to rodents, its mechanisms of action and biotransformation, and effects in fish species are still poorly understood. The main aim of this study was, thus, to investigate sub-lethal effects of anatoxin-a on selected biochemical markers in rainbow trout fry in order to get information about the mechanisms of toxicity and biotransformation of this toxin in fish. Trout fry were administered sub-lethal doses of anatoxin-a (0.08-0.31 μg g⁻¹) intraperitoneally. Livers and muscle tissue were collected 72 h later for quantification of key enzyme activities as biochemical markers. Enzymes assessed in muscle tissues were related to cholinergic transmission (acetylcholinesterase [AChE]), energy metabolism (lactate dehydrogenase [LDH] and NADP⁺-dependent isocitrate dehydrogenase [IDH]). Enzymes assessed in the liver were involved in biotransformation (ethoxyresorufin-O-deethylase [EROD] and glutathione S-transferases [GST]). The results indicated a significant increasing trend for AChE activity with the dose of anatoxin-a, possibly representing an attempt to cope with overstimulation of muscle activity by the toxin, which competes with acetylcholine for nicotinic receptors binding. Anatoxin-a was also found to significantly induce the activities of liver EROD and GST, indicating the involvement of phase I and II biotransformation in its detoxification. Likewise, lactate dehydrogenase activity recorded in fry muscle increased significantly with the dose of anatoxin-a, suggesting an induction of the anaerobic pathway of energy production to deal with toxic stress induced by the exposure. Altogether, the results suggest that under continued exposure in the wild fish may experience motor difficulties, possibly becoming vulnerable to predators, and be at increased metabolic demand to cope with energetic requirements imposed by anatoxin-a biotransformation mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.toxicon.2013.04.014DOI Listing

Publication Analysis

Top Keywords

anatoxin-a
8
rainbow trout
8
biochemical markers
8
trout fry
8
enzymes assessed
8
lactate dehydrogenase
8
dose anatoxin-a
8
biotransformation
5
toxic effects
4
effects pure
4

Similar Publications

The negative effects associated with cyanobacterial blooms are of particular concern in protected ecosystems, as these areas are ecologically significant and attract a high number of visitors. This study aims to explore the cyanobacterial communities and associated toxicity in three reservoirs located within a Mediterranean National Park with a compromised situation at basin-level. Our results demonstrate the occurrence of dense toxic blooms containing microcystins (reaching values close to 280 μg L) and low levels of anatoxin-a and saxitoxins (up to 0.

View Article and Find Full Text PDF

Metatranscriptomics reveals gene expression dynamics during an anatoxin-a producing Dolichospermum bloom in a western coastal lake.

Chemosphere

January 2025

U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA. Electronic address:

Cyanobacteria harmful algal blooms in lakes are primarily driven by nutrient and temperature conditions, yet the interplay of these abiotic factors with microbial community dynamics during bloom events is complex and challenging to unravel. Despite advances through deep sequencing approaches, the underlying transcriptomic changes occurring within blooming and non-blooming taxa remains an actively expanding area of study. In this work, we examined a spring-summer bloom event in Anderson Lake, WA, which has experienced recurring annual blooms dominated by the filamentous, anatoxin-a producing, diazotroph: Dolichospermum sp.

View Article and Find Full Text PDF

Assessment of the Effects of Anatoxin-a In Vitro: Cytotoxicity and Uptake.

Toxins (Basel)

December 2024

Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González 2, 41012 Seville, Spain.

Anatoxin-a (ATX-a) is a cyanotoxin whose toxicological profile has been underinvestigated in comparison to other cyanotoxins such as microcystins (MCs) or cylindrospermopsin (CYN). However, its wide distribution, occurrence, and toxic episodes justify more attention. It is classified as a neurotoxin, but it has also been reported to affect other organs and systems.

View Article and Find Full Text PDF

Role of cyanotoxins in the development and promotion of cancer.

Toxicol Rep

December 2024

Biochemistry Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh 470003, India.

Cyanotoxins are primarily produced by different species of cyanobacteria, also known as blue-green algae, and have appeared to be environmental poisons that have various toxic effects on animal health, including humans. Cyanotoxins have been linked to the development and promotion of multiple cancers in recent studies. Important cyanotoxins, such as microcystins, nodularins, and cylindrospermopsin, have been found to play significant roles in developing and promoting various cancers.

View Article and Find Full Text PDF

Cyanobacterial harmful algal blooms (cHABs) are increasing due to eutrophication and climate change, as is irrigation of crops with freshwater contaminated with cHAB toxins. A few studies, mostly in aquatic protists and plants, have investigated the effects of cHAB toxins or cell extracts on various aspects of photosynthesis, with variable effects reported (negative to neutral to positive). We examined the effects of cyanobacterial live cultures and cell extracts ( or ) and individual cHAB toxins (anatoxin-a, ANA; beta-methyl-amino-L-alanine, BMAA; lipopolysaccharide, LPS; microcystin-LR, MC-LR) on photosynthesis in intact plants and leaf pieces in corn () and lettuce ().

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!