Changes of neural activity in animal models have been correlated with tinnitus in humans. For instance, increased spontaneous firing rates (SFR), increased spontaneous neural synchrony, and cortical tonotopic map reorganization may underlie this phantom auditory percept. The aim of this study is to quantify the changes in SFR activity in the cat primary auditory cortex, after long-term exposure to different types of non-traumatic acoustic environments. For that purpose, four different groups of adult cats were exposed to moderate-level (~70dB SPL), behaviorally irrelevant sounds for several weeks to months, and their SFRs were compared with those in control cats. The sounds consisted of random multi-frequency tone pip ensembles with various bandwidths (2-4kHz, 4-20kHz, and a pair of third-octave bands centered at 4 and 16kHz), as well as a "factory noise". Auditory brainstem response (ABR) thresholds, ABR wave 3 amplitudes at ~55 and 75dB SPL, and distortion product otoacoustic emission (DPOAE) amplitudes were unaffected by the exposure. However, we found that the SFR decreased within the exposure frequency range and increased outside the exposure range. This increased SFR for units with characteristic frequencies outside the exposure frequency range, which was slow to reverse after the exposure offset, suggests a mechanism for tinnitus in the absence of hearing loss.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neulet.2013.04.048 | DOI Listing |
Trends Genet
January 2025
Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan; Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518132, China. Electronic address:
Neuronal activity, including sensory-evoked and spontaneous firing, regulates the expression of a subset of genes known as activity-dependent genes. A key issue in this process is the activation and accumulation of transcription factors (TFs), which bind to cis-elements at specific enhancers and promoters, ultimately driving RNA synthesis through transcription machinery. Epigenetic factors such as histone modifiers also play a crucial role in facilitating the specific binding of TFs.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Otolaryngology, Case Western Reserve University, Cleveland, OH, 44106, USA.
Usher syndrome type 1C (USH1C) is a genetic disorder caused by mutations in the USH1C gene, which encodes harmonin, a key component of the mechanoelectrical transduction complex in auditory and vestibular hair cells. USH1C leads to deafness and vestibular dysfunction in humans. An Ush1c knockout (KO) mouse model displaying these characteristic deficits is generated in our laboratory.
View Article and Find Full Text PDFFood Chem
January 2025
Department of Physiology, The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, Singapore 117593, Singapore; Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore 119077, Singapore; Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research (A*STAR), Singapore; Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore; CAMP, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, Singapore 138602, Singapore. Electronic address:
Cultivated meats are typically hybrids of animal cells and plant proteins, but their high production costs limit their scalability. This study explores a cost-effective alternative by hypothesizing that controlling the Maillard and lipid thermal degradation reactions in pure cells can create a meaty aroma that could be extracted from minimal cell quantities. Using spontaneously immortalized porcine myoblasts and fibroblasts adapted to suspension culture with a 1 % serum concentration, we developed a method to isolate flavor precursors via freeze-thawing.
View Article and Find Full Text PDFCells
January 2025
IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA.
Prog Neurobiol
January 2025
Institute of Biomedical Investigations August Pi i Sunyer (IDIBAPS), Systems Neuroscience, 08036 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain. Electronic address:
Elucidating human cerebral cortex function is essential for understanding the physiological basis of both healthy and pathological brain states. We obtained extracellular local field potential recordings from cortical slices of neocortical tissue from refractory epilepsy patients. Multi-electrode recordings were combined with histological information, providing a two-dimensional spatiotemporal characterization of human cortical dynamics in control conditions and following modulation of the excitation/inhibition balance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!