Branching models have a long history of biological applications, particularly in population dynamics. In this work, our interest is the development of mathematical models to describe the demographic dynamics of socially structured animal populations, focusing our attention on lineages, usually matrilines, as the basic structure in the population. Significant efforts have been made to develop models based on the assumption that all individuals behave identically with respect to reproduction. However, the reproduction phase has a large random component that involves not only demographic but also environmental factors that change across range distribution of species. In the present work, we introduce new classes of birth-death branching models which take such factors into account. We assume that both, the offspring probability distribution and the death probabilities may be different in each generation, changing either predictably or unpredictably in relation to habitat features. We consider the genealogical tree generated by observation of the process until a pre-set generation. We determine the probability distributions of the random variables representing the number of dead or living individuals having at least one ancestor alive, living individuals whose ancestors are all dead, and dead individuals whose ancestors are all dead, explicitly obtaining their principal moments. Also, we derive the probability distributions corresponding to the partial and total numbers of such biological variables, obtaining in particular the distribution of the total number of matriarchs in the genealogical tree. We apply the proposed models to describe the demographic dynamics of African elephant populations living in different habitats.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jtbi.2013.04.030 | DOI Listing |
IUBMB Life
January 2025
Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
Targeting the influencing factors in tumor growth and expansion in the tumor microenvironment is one of the key approaches to cancer immunotherapy. Various factors in the tumor microenvironment can in cooperation stimulate tumor growth, suppress anti-tumor immune responses, promote drug resistance, and ultimately enhance tumor recurrence. Therefore, due to the dependence and close cooperation of these axes, their combined targeting can have a greater effect compared to their individual targeting.
View Article and Find Full Text PDFDis Model Mech
January 2025
Laboratory Genes and Disease, Department of Laboratory Medicine, Medical University of Vienna (MUW), Vienna, Austria.
Genetically engineered mouse models (GEMMs) are instrumental for modelling local and systemic features of complex diseases such as cancer. Non-invasive, longitudinal cell detection and monitoring in tumors, metastases and/or the micro-environment is paramount to achieve a better spatiotemporal understanding of cancer progression and to evaluate therapies in preclinical studies. Bioluminescent and fluorescent reporters marking tumor cells or their microenvironment are valuable for non-invasive cell detection and monitoring in vivo.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Université de Lorraine, CNRS, LRGP, F-54000 Nancy, France.
Stereochemistry plays a key role in both fundamental chemical processes and the dynamics of a large set of molecular systems of importance in chemistry, medicine and biology. Predicting the chemical transformations of organic precursors in such environments requires detailed kinetic models based on laboratory data. Reactive intermediates play a critical role in constraining the models but their identification and especially their quantification remain challenging.
View Article and Find Full Text PDFJ Clin Invest
January 2025
State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center - Zhongshan School of Medicine.
Nasopharyngeal carcinoma (NPC) presents a substantial clinical challenge due to the limited understanding of its genetic underpinnings. Here we conduct the largest scale whole-exome sequencing association study of NPC to date, encompassing 6,969 NPC cases and 7,100 controls. We unveil 3 germline genetic variants linked to NPC susceptibility: a common rs2276868 in RPL14, a rare rs5361 in SELE, and a common rs1050462 in HLA-B.
View Article and Find Full Text PDFChemphyschem
January 2025
Goethe-Universität Frankfurt am Main, Physical and Theoretical Chemistry, Max von Laue-Straße 7, 60438, Frankfurt am Main, GERMANY.
The light-sensing activity of phytochromes is based on the reversible light-induced switching between two isomerization states of the bilin chromophore. These photo-transformations may not necessarily be only unidirectional, but could potentially branch back to the initial ground state in a thermally driven process termed shunt. Such shunts have been rarely reported, and thus our understanding of this process and its governing factors are limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!