Enzyme catalyzed cross-linking of spruce galactoglucomannan improves its applicability in barrier films.

Carbohydr Polym

Wallenberg Wood Science Centre (WWSC), School of Chemistry, KTH, Royal Institute of Technology, Stockholm, Sweden.

Published: June 2013

Hemicelluloses are one of the main constituents of plant cell walls and thereby one of the most abundant biopolymers on earth. They can be obtained as by-products from different wood based processes, most importantly from the mechanical pulping. Hemicelluloses have interesting properties in e.g. barrier film applications. However, their relatively low molecular weight after isolation and co-extraction with lignin has limited their use. In this work, we present a novel technique for increasing the molecular weight of different wood hemicelluloses from mechanical pulping process waters as well as from pre-hydrolysis extracts. This is achieved by enzyme-catalyzed cross-linking of aromatic moieties bound to the hemicelluloses. The cross-linking treatment resulted in significantly improved mechanical properties in barrier films made with spruce galactoglucomannan. To our knowledge, this is the first time that wood hemicelluloses have been cross-linked by utilizing the bound aromatic moieties and creates new possibilities for utilizing this raw material source.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2013.03.016DOI Listing

Publication Analysis

Top Keywords

spruce galactoglucomannan
8
barrier films
8
mechanical pulping
8
properties barrier
8
molecular weight
8
wood hemicelluloses
8
aromatic moieties
8
hemicelluloses
5
enzyme catalyzed
4
catalyzed cross-linking
4

Similar Publications

Galactoglucomannan (GGM) is the predominant hemicellulose in coniferous trees, such as Norway spruce, and has been used as a multipurpose emulsifier in the food industry. In vitro digestion with a cellular antioxidant activity assay was performed to determine the bioaccessibility and antioxidant activity of phenolic compounds, and the behaviour of GGM on in vivo experimental assay against induced colon cancer. The results showed that digestion decreased the bioaccessibility and antioxidant capacity of phenolic compounds.

View Article and Find Full Text PDF

Gel characteristics of low-acetyl spruce galactoglucomannans.

Carbohydr Polym

December 2023

Department of Food and Nutrition, P.O. Box 66, FIN-00014 University of Helsinki, Finland; Helsinki Institute of Sustainability Science (HELSUS), P.O. Box 65, FIN-00014 University of Helsinki, Finland. Electronic address:

Galactoglucomannans (GGM) recovered from abundant forest industry side-streams has been widely recognized as a renewable hydrocolloid. The low molar mass and presence of O-acetyl side-groups results in low viscous dispersions and weak intermolecular interactions that make GGM unsuitable for hydrogel formation, unless forcefully chemically derivatized and/or crosslinked with other polymers. Here we present the characterization of hydrogels prepared from GGM after tailoring the degree of acetylation by alkaline treatment during its recovery.

View Article and Find Full Text PDF

Wood hemicelluloses as effective wall materials for spray-dried microcapsulation of polyunsaturated fatty acid-rich oils.

Food Res Int

February 2023

Department of Food and Nutrition, University of Helsinki, P.O. Box 66 FIN-00014 HU, Finland; Helsinki Institute of Sustainability Science (HELSUS), University of Helsinki, P.O. Box 65 FIN-00014 HU, Finland.

The most commonly-used and effective wall materials (WMs) for spray-dried microencapsulation of bioactive compounds are either costly, or derived from unsustainable sources, which lead to an increasing demand for alternatives derived from sustainable and natural sources, with low calories and low cost. Wood hemicelluloses obtained from by-products of forest industries appear to be attractive alternatives as they have been reported to have good emulsifying properties, low viscosity at high concentrations, high heat stability and low heat transfer. Here, we investigated the applicability of spruce galactoglucomannans (GGM) and birch glucuronoxylans (GX), to encapsulate flaxseed oil (FO, polyunsaturated fatty acid-rich plant based oil) by spray drying; and the results were compared to those of the highly effective WM, gum Arabic (GA).

View Article and Find Full Text PDF

O as initiator of autocatalytic degradation of hemicelluloses and monosaccharides in hydrothermal treatment of spruce.

Carbohydr Polym

October 2022

Laboratory of Industrial Chemistry and Reaction Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Henriksgatan 2, Turku/Åbo FI-20500, Finland. Electronic address:

The influence of oxygen (0-50 bar) on the molar mass and composition of hemicelluloses after hydrothermal treatment of spruce chips was studied in a batch reactor setup at 130 °C-160 °C. Purified galactoglucomannan was studied as a reference. The dissolved oxygen enhanced significantly the depolymerization of hemicelluloses from over 15,000 g/mol to 180 g/mol (monomers) as well as promoted acids formation from the monosaccharides.

View Article and Find Full Text PDF

This study aimed to characterise pressurised hot water (PHW) extracts from nonconventional sources of functional carbohydrates and phenolic compounds in terms of antioxidant capacity, antiviral activity, toxicity, and human erythrocytes' protection antidiabetic potential. PHW extracts of Norway spruce bark (E1 + E2) and Birch sawdust (E3 + E4) contained mostly galactoglucomannan and glucuronoxylan. In contrast, samples E5 to E9 PHW extracted from Norway spruce, and Scots pine bark are rich sources of phenolic compounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!