Rare mutations in non-small-cell lung cancer.

Future Oncol

University of Colorado Cancer Center, Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO 80045, USA.

Published: May 2013

In the last decade, new insights in molecular biology have changed the therapeutic landscape of non-small-cell lung cancer. Since 2004, when activating mutations of the EGFR were firstly identified, several genetic aberrations have been discovered, mainly in adenocarcinoma. EGFR mutations are a relatively frequent event in non-small-cell lung cancer, generally consisting of exon 19 deletion or exon 21 substitution. In adenocarcinoma, additional rare mutations are detectable in the EGFR gene, as well as in other genes, including ALK, ROS1, RET, HER2 and BRAF. Recent studies in squamous cell carcinoma identified TP53 as the most frequent mutation, followed by additional more rare mutations, including PI3KCA, PTEN, DDR2 and FGFR. The aim of the present review is to analyze the potential prognostic and predictive role of rare mutations.

Download full-text PDF

Source
http://dx.doi.org/10.2217/fon.13.16DOI Listing

Publication Analysis

Top Keywords

rare mutations
16
non-small-cell lung
12
lung cancer
12
additional rare
8
mutations
5
rare
4
mutations non-small-cell
4
cancer decade
4
decade insights
4
insights molecular
4

Similar Publications

Naa15 Haploinsufficiency and De Novo Missense Variants Associate With Neurodevelopmental Disorders and Interfere With Neurogenesis and Neuron Development.

Autism Res

January 2025

Center for Medical Genetics and Hunan key Laboratory of Medical Genetics, MOE Key Laboratory of Rare Pediatric Disease, School of Life Sciences, Central South University, Changsha, Hunan, China.

Neurodevelopmental disorders (NDDs) encompass a group of conditions that impact brain development and function, exhibiting significant genetic and clinical heterogeneity. NAA15, the auxiliary subunit of the N-terminal acetyltransferase complex, has garnered attention due to its association with NDDs. However, the precise role of NAA15 in cortical development and its contribution to NDDs remain elusive.

View Article and Find Full Text PDF

Objectives: WNT10A mutations are associated with tooth agenesis. This study aimed to assess the clinical outcomes of dental implants in patients carrying WNT10A mutations with different molecular statuses and phenotypes over a long-term follow-up period.

Materials And Methods: Patients with tooth agenesis were screened by whole-exome sequencing (WES) from January 2010 to September 2023.

View Article and Find Full Text PDF

Current progress in CRISPR-Cas systems for rare diseases.

Prog Mol Biol Transl Sci

January 2025

Department of Biotechnology, Faculty of Engineering and Technology, Rama University, Kanpur, Uttar Pradesh, India. Electronic address:

The groundbreaking CRISPR-Cas gene editing method permits exact genetic code alteration. The "CRISPR" DNA protects bacteria from viruses. CRISPR-Cas utilizes a guide RNA to steer the Cas enzyme to the genome's gene editing target.

View Article and Find Full Text PDF

Bi-allelic KICS2 mutations impair KICSTOR complex-mediated mTORC1 regulation, causing intellectual disability and epilepsy.

Am J Hum Genet

January 2025

Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany; Center for Rare Disease, University of Tübingen, Tübingen, Germany; Genomics for Health in Africa (GHA), Africa-Europe Cluster of Research Excellence (CoRE). Electronic address:

Nutrient-dependent mTORC1 regulation upon amino acid deprivation is mediated by the KICSTOR complex, comprising SZT2, KPTN, ITFG2, and KICS2, recruiting GATOR1 to lysosomes. Previously, pathogenic SZT2 and KPTN variants have been associated with autosomal recessive intellectual disability and epileptic encephalopathy. We identified bi-allelic KICS2 variants in eleven affected individuals presenting with intellectual disability and epilepsy.

View Article and Find Full Text PDF

Sengers Syndrome (SS) is a rare autosomal recessive mitochondrial disorder caused by mutations in the acylglycerol kinase (AGK) gene on chromosome 7, also known as cardiomyopathic mitochondrial DNA depletion syndrome (MTDPS10). This disorder disrupts mitochondrial DNA function and energy metabolism, presenting with symptoms such as congenital cataracts, hypertrophic cardiomyopathy, skeletal myopathy, exercise intolerance, and lactic acidosis. Previous research has shown SS affects oxidative phosphorylation and mitochondrial respiration, implicating the TIM22 complex and carrier import.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!