Investigating polymer thiolation in gene delivery.

J Biomater Sci Polym Ed

Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.

Published: April 2014

Thiolated polymers containing disulfide linkages are commonly researched in gene delivery with the assumption that the thiolated complexes form disulfide bonds. This study investigates the extent of disulfide linking in a thiol-containing polymer and determines the impact that free thiols have on the polymer's delivery potential. A fluorescent cationic polymer containing thiol pendant chains was prepared from poly(allylamine) and 2-iminothiolate (Traut's reagent). Polymer fluorescence was determined by UV plate readings and fluorescent microscopy. Transfection efficiency and cytotoxicity were assessed in MCF-7 breast cancer cells. Results show that thiolated polymers exhibited fluorescence at ex/em ∼595/620. Fluorescent measurements, microscopy imaging, and DNA electrophoresis show that thiolated polymers are not internalized by cells in a culture, yet, they bind to the cell surface, perhaps valuable for applications requiring cell adhesion.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09205063.2012.727266DOI Listing

Publication Analysis

Top Keywords

thiolated polymers
12
gene delivery
8
investigating polymer
4
polymer thiolation
4
thiolation gene
4
thiolated
4
delivery thiolated
4
polymers disulfide
4
disulfide linkages
4
linkages commonly
4

Similar Publications

Recurrent aphthous stomatitis (RAS) is a common condition that manifests as ulcerative lesions in the oral mucosa. In this study, bilayer, mucoadhesive nanofibers loaded with pomegranate flower extract (PFE) were prepared using thiolated gelatin (TGel) and thiolated chitosan (TCS) as the active layer and drug-free polycaprolactone (PCL) as the backing layer. Gelatin (Gel) and chitosan (CS) were successfully thiolated (proven by Ellman's assay, solubility, H NMR, FTIR, Raman spectroscopy, and XRD) and electrospun into active nanofibrous layers with a diameter of 356.

View Article and Find Full Text PDF

Construction of Loop Polyzwitterion Brushes on PET Sheets via the Chain-End Closure Strategy To Improve Antifouling and Hemocompatible Properties.

Langmuir

January 2025

Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.

Steric stabilization and lubrication give loop polymer brushes enhanced antifouling properties. In the study, linear zwitterionic poly(NMASMCMS) brushes were first constructed on a poly(ethylene terephthalate) (PET) surface through surface-initiated reversible addition-fragmentation chain-transfer (SI-RAFT) polymerization. The tethered linear brushes on sheets were then thiolated with ethanolamine, followed by oxidation to form loop brushes.

View Article and Find Full Text PDF

Simulated Gastrointestinal Fluids Impact the Stability of Polymer-Functionalized Selenium Nanoparticles: Physicochemical Aspects.

Int J Nanomedicine

December 2024

Division of Medical Physics and Biophysics, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, 8010, Austria.

Background: Selenium (Se) is a vital micronutrient for maintaining homeostasis in the human body. Selenium nanoparticles (SeNPs) have demonstrated improved bioavailability compared to both inorganic and organic forms of Se. Therefore, supplementing with elemental Se in its nano-form is highly promising for biomedical applications related to Se deficiency.

View Article and Find Full Text PDF
Article Synopsis
  • Mucus consists of mucin polymers linked by disulfide bonds, and in muco-obstructive diseases, these bonds increase mucus viscosity and stiffness.
  • Reducing agents that can break these disulfide bonds may help restore healthy mucus flow by treating abnormal mucus properties.
  • The study compares the effectiveness of three reducing agents using a rheological assay to analyze how each agent affects the properties of a mucus-like hydrogel, highlighting their different degradation mechanisms and potential impact on drug delivery and treatment.
View Article and Find Full Text PDF

The present study aims to develop a novel thiolated carboxymethyl cellulose (CMC-SH) by the addition of aldehyde groups via oxidation followed by reductive amination and then develop CMC-SH based pH-responsive hydrogel by free radical polymerization approach while assessing its mucoadhesive and permeation-enhancing capabilities. By in-vitro characterization, the intended compound's chemical composition, thermal stability, and amorphous nature were analyzed for CMC-SH polymer. Ellman's assay was utilized to estimate the thiol content and permeation analysis was performed to evaluate its enhanced permeability characteristics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!