One-pot synthesis of ZnO2/ZnO composite with enhanced photocatalytic performance for organic dye removal.

J Nanosci Nanotechnol

School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.

Published: January 2013

The ZnO2/ZnO photocatalysts with various ZnO2 contents were prepared by one-pot synthesis method using ZnO and H2O2 as raw materials. The photocatalysts were characterized by XRD, UV-vis DRS, SEM, EDS, FT-IR spectra, fluorescence emission spectra, and BET specific area. The photocatalytic performance of the photocatalyst was evaluated by photocatalytic degradation of methyl orange (MO) and rhodamine B (RhB). The results showed that the photocatalytic activity of the ZnO2/ZnO was much higher than that of single-phase ZnO or ZnO2. The optimum ZnO2 content was 1.0 wt.%. The maximal degradation rate constant of MO and RhB was 4.1 times and 2.2 times that observed for pure ZnO, respectively. The stability of the prepared photocatalyst in the photocatalytic process was also investigated. The active species in dye degradation were examined by adding a series of scavengers. The possible mechanisms involved in the photocatalytic degradation of dye were also discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2013.7091DOI Listing

Publication Analysis

Top Keywords

one-pot synthesis
8
photocatalytic performance
8
photocatalytic degradation
8
photocatalytic
6
synthesis zno2/zno
4
zno2/zno composite
4
composite enhanced
4
enhanced photocatalytic
4
performance organic
4
organic dye
4

Similar Publications

In this work, we present an efficient strategy for the straightforward synthesis of functionalized 1,6-dihydropyridine derivatives a three-component reaction of 3-vinylchromones, aromatic aldehydes, and ammonium acetate. A tandem procedure including NH aldimine formation/Michael-type addition/opening of the pyrone ring/isomerization/6π-electrocyclization/[1,5]-H shift allows rapid access to a series of dihydropyridines bearing an -hydroxybenzoyl and a benzoyl scaffold in good yields. Readily available precursors, simple heating conditions, and operational simplicity are some highlighted advantages of this transformation.

View Article and Find Full Text PDF

Polyurethanes (PU) make up a large portion of commodity plastics appearing in applications including insulation, footwear, and memory foam mattresses. Unfortunately, as thermoset polymers, polyurethanes lack a clear path for recycling and repurposing, creating a sustainability issue. Herein, using dynamic depolymerization, we demonstrate a simple one-pot synthesis for preparation of an upcycled polyurethane grafted graphene material (PU-GO).

View Article and Find Full Text PDF

Nowadays, benzimidazole and its derivatives are widely assembled into multifunctional materials with various properties such as mechanochromism, photochromism, thermochromism and electrochromism. Herein, two novel zinc(II) coordination compounds, [Zn(L)Br]·2HO (1) and [Zn(L)Cl]·2HO (2) (L = tetra(1-benzo[]imidazol-2-yl)ethene), have been constructed one-pot facile synthesis from bis(1-benzo[]imidazol-2-yl)methane (L) and zinc(II) salts. The ligand L with a CC double bond was formed by C-C coupling of two sp-C atoms of L in solvothermal synthesis, which provides a new strategy to generate the conjugation system conveniently.

View Article and Find Full Text PDF

Efficient Copolymerization of Methyl Methacrylate and Lactide Using Metalate Catalysts.

Macromol Rapid Commun

January 2025

Chimie ParisTech, CNRS, Institut de Recherche de Chimie Paris, PSL University, Paris, 75005, France.

The development of catalysts that are both robust and highly active at room temperature can often be seen as a major challenge in anionic polymerization. However, these properties are desirable for polymer synthesis because they allow for easy and sustainable production of interesting materials. Here, iron and magnesium complexes are used to form in situ generated metalate complexes that are shown to be highly active in the room temperature copolymerization of methyl methacrylate and lactide.

View Article and Find Full Text PDF

Construction and Band Gap-Regulation of Ordered Macro-Microporous Single Crystals of an Amine-Linked Covalent Organic Framework.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Bioinspired Interfacial Materials Science, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China.

Heterogeneity engineering provides an effective route to manipulate the chemical and physical properties of covalent organic frameworks (COFs) but is still under development for their single-crystal form. Here, we report the strategy based on a combination of the template-assisted modulated synthesis with a one-pot crystallization-reduction method to directly construct ordered macro-microporous single crystals of an amine-linked three-dimensional (3D) COF (OM-COF-300-SR). In this strategy, the colloidal crystal-templating synthesis not only assists the formation of ordered macropores but also greatly facilitates the in situ conversion of linkages (from imine to amine) in the COF-300 single crystals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!