Developing highly selective probes for subcellular regions such as nucleus and cytoplamic organelles is of great interest for cellular imaging and high content screening analysis for biology and medicine. Cytoplasmic delivery of QDs has been well-understood, while nuclear delivery of QDs has been a challenge due to the unique structural characteristics of cell nucleus. In this study, we systematically investigated nucleus penetrating properties of small-sized ligand-exchanged QDs with either positive or negative surface charges in the similar size range of hydrodynamic diameter (7-10 nm). We found that the positively-charged QDs efficiently stain the nucleus in fixed HeLa cells as well as label nucleolar compartments in live HeLa cells. In contrast, the negatively charged QDs with the similar size range stain only the cytoplam in either fixed or live cells. The charge-dependent labeling pattern allowed us to simultaneously perform multiplex imaging of nuclues and cytoplasm. This study offers an insight into efficient nuclear delivery of nanoparticles such as QDs of which surface charge and size are critical for intracelllar localization and delivery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2013.6917 | DOI Listing |
Bioconjug Chem
January 2025
Center for Biomolecular Science and Engineering, U.S. Naval Research Laboratory, Washington, District of Columbia 20375, United States.
Erythropoietin (EPO)-induced cellular signaling through the EPO receptor (EPOR) is a fundamental pathway for the modulation of cellular behavior and activity. In our previous work, we showed in primary human astrocytes that the multivalent display of EPO on the surface of semiconductor quantum dots (QDs) mediates augmented JAK/STAT signaling, a concomitant 1.8-fold increase in the expression of aquaporin-4 (AQPN-4) channel proteins, and a 2-fold increase in the AQPN-4-mediated water transport activity.
View Article and Find Full Text PDFJ Mol Graph Model
January 2025
School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China. Electronic address:
MXenes quantum dots (QDs), including NbC, NbCO, and NbCF, are emerging materials with exceptional structural, electronic, and optical properties, making them highly suitable for biomedical applications. This study investigates the structural optimization, stability, electronic properties, and drug-loading potential of these QDs using fluorouracil (Flu) as a model drug. Structural analyses show that the functionalization of NbC with O and F atoms enhances stability, with binding energies (BEs) of 7.
View Article and Find Full Text PDFJ Colloid Interface Sci
April 2025
School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China. Electronic address:
With the unique photo-physical properties and strong bio-compatibility. Quantum dots (QDs) have sparked interest in biomedical fields such as imaging, biosensing and therapeutics. However, the low stability and insufficient tumor specificity have largely constrained their potential biomedical applications.
View Article and Find Full Text PDFLuminescence
December 2024
School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India.
This study presents a mild, one-pot synthetic approach for the synthesis of multicolor, water soluble, photo luminescent CdS and CdSe quantum dots (QDs). To achieve this goal, cyclic peptides containing cysteine residues are rationally designed and synthesized. Among the peptides tested, those containing two cysteine residues exhibit superior stabilizing properties, ensuring the solubility and long-term stability of the QDs in aqueous solutions for several months.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Biomedical Institute for Multimorbidity, Hull York Medical School, University of Hull, Hull, HU6 7RX, UK.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!