Nitrogen doping TiO2 and gamma-Al2O3 composite oxide granules (N-TiO2/gamma-Al2O3) were prepared by co-precipitation/oil-drop/calcination in gaseous NH3 process using titanium sulphate and aluminum nitrate as raw materials. After calcination at 550 degrees C in NH3 atmosphere, the composite granules showed anatase TiO2 and gamma-Al2O3 phases with the granularity of 0.5-1.0 mm. The anatase crystallite size of composite granules was range from 3.5-25 nm calculated from XRD result. The UV-Vis spectra and N 1s XPS spectra indicated that N atoms were incorporated into the TiO2 crystal lattice. The product granules could be used as a photocatalyst in moving bed reactor, and was demonstrated a higher visible-light photocatalytic activity for 2,4-dichlorophenol degradation compared with commercial P25 TiO2. When the mole ratio of TiO2 to Al2O3 equal to 1.0 showed the highest catalytic activity, the degradation percentage of 2,4-chlorophenol could be up to 92.5%, under 60 W fluorescent light irradiation for 9 hours. The high visible-light photocatalytic activity might be a synergetic effect of nitrogen doping and the form of binary metal oxide of TiO2 and gamma-Al2O3.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2013.6846DOI Listing

Publication Analysis

Top Keywords

photocatalytic activity
12
tio2 gamma-al2o3
12
activity degradation
8
nitrogen doping
8
composite granules
8
visible-light photocatalytic
8
tio2
6
n-tio2/gamma-al2o3 granules
4
granules preparation
4
preparation characterization
4

Similar Publications

Efficient photocatalytic degradation of bisphenol A on 2D-3D spherically hierarchical structure ZnInS.

Front Chem

January 2025

Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China.

Bisphenol A (BPA) poses a significant environmental threat due to its widespread use as an industrial chemical and its classification as an environmental endocrine disruptor. The urgent need for effective BPA removal has driven research toward innovative solutions. In this study, we present the synthesis and application of a novel 2D-3D spherically hierarchical ZnInS (ZIS) photocatalyst for the photocatalytic degradation of BPA under visible light for the first time.

View Article and Find Full Text PDF

This research aims to develop YCuMnO double perovskite, using a citrate auto combustion method, to be used as a photocatalyst for the degradation of organic dyes and antibiotics. XRD and Raman characterization revealed the synthesis of pure-phase YCuMnO double perovskite. The X-ray photoelectron spectroscopy results show the presence of +4 and +2 oxidation states of Mn and Cu ions.

View Article and Find Full Text PDF

Unraveling the role of chitosan in enhancing the photodegradation of ciprofloxacin by using chitosan-titanates composites: Experimental and in-silico approach.

J Environ Manage

January 2025

División de Materiales Avanzados, Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), 78216, San Luis Potosí, SLP, Mexico. Electronic address:

A hybrid composite (inorganic-organic) based on chitosan-functionalized hydrogen titanate nanotubes (TiCH) was synthesized by the hydrothermal method assisted by microwave, during 5h at 150 °C. The in-silico analysis determined the possible chitosan chemical adsorption models after calculating the Gibbs energies of their HOMO-LUMO orbitals. The TGA analysis confirmed the stability and helped to obtain the real functionalization degrees for the 3TiCH (2.

View Article and Find Full Text PDF

Over the past few decades, significant efforts have been dedicated to advancing technologies for the removal of micropollutants from water. Achieving complete pure water with a single treatment process is challenging and nearly impossible. One promising approach among various alternatives is adopting hybrid technology, which is considered as a win-win technology.

View Article and Find Full Text PDF

Site-Selective and High-Density Gold Nanoparticle Photodeposition on the Edges of ZnO Nanowires.

J Phys Chem Lett

January 2025

Graduate School of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502, Japan.

Selective modification of chemically active sites on supports, such as steps, edges, and corners, with metal nanoparticles (NPs) is a challenging topic in the fields of catalysis and photocatalysis. However, the formation of site-selective, high-density metal NPs on a support has not yet been achieved. Radial ZnO mesocrystals composed of hexagonal nanowires (NWs) with {101̅0} sidewalls were synthesized by a simple solution-phase method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!