A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Electrical and mechanical characterisation of single wall carbon nanotubes based composites for tissue engineering applications. | LitMetric

Electrical and mechanical characterisation of single wall carbon nanotubes based composites for tissue engineering applications.

J Nanosci Nanotechnol

Faculty of Engineering, Interdepartmental Research E. Piaggio, University of Pisa, Largo Lucio Lazzarino 2, 56126 Pisa, Italy.

Published: January 2013

This paper presents the realisation of conductive matrices for application to tissue engineering research. We used poly(L-lactide (PLLA)), poly(epsilon-caprolactone) (PCL), and poly(lactide-co-glycolide) (PLGA) as polymer matrix, because they are biocompatible and biodegradable. The conductive property was integrated to them by adding single wall carbon nanotubes (SWNTs) into the polymer matrix. Several SWNTs concentrations were introduced aiming to understand how they influence and modulate mechanical properties, impedance features and electric percolation threshold of polymer matrix. It was observed that a concentration of 0.3% was able to transform insulating matrix into conductive one. Furthermore, a conductive model of the SWNT/polymer was developed by applying power law of percolation threshold.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2013.6708DOI Listing

Publication Analysis

Top Keywords

polymer matrix
12
single wall
8
wall carbon
8
carbon nanotubes
8
tissue engineering
8
percolation threshold
8
electrical mechanical
4
mechanical characterisation
4
characterisation single
4
nanotubes based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!